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DEDICATION 
 

 

The Tenth Islamic Countries Conference on Statistical Sciences, including this Proceedings are 

dedicated to the memory of Mir Maswood Ali (photo above), Professor Emeritus of Statistics at 

the University of Western Ontario. The following is an Obituary, written by his brother Mir 

Masoom Ali, George and Frances Ball Distinguished Professor Emeritus of Statistics, Ball State 

University: 

Mir Maswood Ali, 80, Professor of Statistics Emeritus, University of Western Ontario and a 

brilliant statistician of Bangladeshi origin, died August 18, 2009 in London, Ontario, Canada due 

to pulmonary complications. It is my great honor and privilege to write this obituary for my older 

brother who was very dear to me and who had tremendous influence on my career.  

Ali received his B.Sc. degree in Mathematics in 1948 and his M.Sc. degree in Statistics in 

1950 both from the University of Dhaka. He belonged to the first batch of graduate students in 

statistics and had obtained first class and secured the highest mark for which he was awarded a 

gold medal. He served as Lecturer in the Department of Statistics at Dhaka University from 1950 

to 1952. He then worked from 1952 to 1957 as an Actuarial Assistant at Norwich Union Life and 

Canada Life. In 1958, he obtained a second Master’s degree in Actuarial Science at the 

University of Michigan and worked there as a Teaching Fellow until 1959. He then went to the 

University of Toronto where he obtained his Ph.D. degree in Statistics in 1961 under the 

supervision of D. A. S Fraser after merely two years of studies. He then joined the Mathematics 

Department at the University of Western Ontario (UWO) in London, Ontario, Canada as 

assistant professor in 1961. He was the first faculty member in statistics in the department and 

was quickly promoted to the rank of associate professor in 1963 and to full professor in 1966 and 

he remained there until his retirement in 1994 when he was named Professor Emeritus. Ali had 

developed the graduate and undergraduate programs in statistics in his department and he was 

instrumental in the creation of a separate Department of Statistics and Actuarial Sciences at 

UWO. 
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He supervised 15 Ph.D. students, a number of whom are now well-known statisticians and 40 

Master’s theses. He published in leading statistical journals such as the Annals of Mathematical 

Statistics, the Journal of the Royal Statistical Society, the Journal of Multivariate Analysis, the 

Pacific Journal of Mathematics, and Biometrika, to name a few. His research interests encompass 

many areas of Statistics and Mathematics, including order statistics, distribution theory, 

characterizations, spherically symmetric and elliptically contoured distributions, multivariate 

statistics, and n-dimensional geometry and his two highly rated papers are in geometry which 

appeared in the Pacific Journal of Mathematics. 

He was a man of strong principle. He was also a very decent and humble man who never 

sought recognition for anything that he did or achieved. He was a dedicated family man and he 

devoted lot of his time to his own family. He left behind his loving wife of 47 years Surayia, and 

eight grown children, Rayhan, Yasmin, Selina, Sharmeene, Sadek, Nasreen, Ayesha, and Adnan, 

and seven grandchildren. His youngest daughter Ayesha followed his father’s footsteps and now 

teaches statistics at the University of Guelph in Canada. 

Mir Maswood Ali was my immediate older brother and it was due to his influence that I got 

into statistics as a student in 1953. He was a great mentor, a great teacher and a friend and he was 

all that I wanted to be in life. I will miss him dearly. 

 

In loving memory of my brother, 

Mir Masoom Ali  

George and Frances Ball Distinguished Professor Emeritus 

Ball State University, Muncie, Indiana, USA 

Excerpted from IMS Bulletin, Vol. 38, Issue 9, 2009 
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PREFACE 

 
The Tenth Islamic Countries Conference on Statistical Sciences (ICCS-X) was held during the 

period December 20-23, 2009 at the brand new campus of The American University in Cairo 

(AUC), in New Cairo, Egypt. The ICCS-X was organized by the Islamic Countries Society of 

Statistical Sciences (ISOSS) and cosponsored by AUC and the Egyptian Cabinet Information and 

Decision Support Center (IDSC).  

The collaboration between a governmental organization, represented in IDSC, and a private 

non-for-profit university, represented in AUC, in sponsoring such an international conference 

has proven to be a very effective and mutually beneficial joint effort. The conference, which 

brought together researchers and practitioners in statistical sciences from 32 countries all over 

the world, was open to all people interested in the development of statistics and its applications 

regardless of affiliation, origin, nationality, gender or religion.  

The theme of the ICCS-X was Statistics for Development and Good Governance. As can be 

seen in this Proceedings, three Discussion Panels “Public Opinion Polling and Good 

Governance,” by Prof. Magued Osman, IDSC, “Measuring the Unmeasurable,” by Dr. Anis 

Yusoff, National University of Malaysia, and “Indicators and Politics,” by Prof. Ali S. Hadi, 

AUC, have been devoted entirely to this theme. Other papers dealt with various broad topics in 

statistics theory and its applications. As a result, ICCS-X has attracted a distinguished team of 

speakers giving more than 190 presentations.  

These proceedings do not contain all articles that have been presented at the conference. 

Only articles that have undergone and passed peer reviews are included. The reviews have taken 

into consideration both the quality of the paper and the quality of the presentation at the 

conference. These Proceedings contain 29 abstracts and 85 complete papers. The papers were 

arranged alphabetically according to the first author. Due to the large size, these proceedings are 

split into two volumes; Volume I and Volume II. 

Organizing a conference requires a lot of effort by many people, collaboration, coordination, 

and paying attention to very small details. We would like to thank all organizers and participants 

of the conference. We are particularly grateful to Prof. Jef Teugels, Catholic University of 

Leuven, Belgium and the current President of the International Statistical Institute for giving the 

opening keynote talk despite his very busy schedule. We are also thankful to Prof. Kaye E. 

Basford, University of Queensland, Australia, Prof. Jim Berger, Duke University, USA and 

former President of the Institute of Mathematical Statistics, and Prof. Edward J. Wegman, 

George Mason University, USA for giving the other three keynote talks. In addition to the four 

keynote talks and the three panel discussions, the program included nine invited sessions and 20 

contributed sessions. According to feedback from participants, the conference was a great 

success. 

We are also grateful for the following referees who devoted the time and effort to review 

these articles: Dr. Mina Abdel Malek, Dr. Maged George, Dr. Mohamed Gharib, Dr. Ramadan 

Hamed, Dr. Mohamed Ismail, Dr. Hafiz Khan, Dr. Mohamed Mahmoud, Dr. Nadia Makary, Dr. 

Amani Moussa, Dr. Abdel Nasser Saad, Dr. Kamal Selim, Dr. Tarek Selim, Dr. Zeinab Selim, 

and Dr. Mark Werner. 

The Conference was organized by three Committees: the Scientific and Program Committee 

(Chair: Ali S. Hadi and Co-Chair: Zeinab Amin), the International Organizing Committee 

(Chair: Shahjahan Khan), and the Local Organizing Committee (Chair: Magued Osman and Co-

http://www.isoss.com.pk/
http://www.isoss.com.pk/
http://www.idsc.gov.eg/
http://www.idsc.gov.eg/
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Chair: Zeinab Amin). The members of these committees are given on page xv. Each of these 

committees has worked tirelessly for the organization of this conference. We are indebted to 

each and every one of them. We have also benefited from the contributions of the ISOSS 

Headquarters and in particular the President of ISOSS Prof. Shahjahan Khan. Prof. Mohamed 

Ibrahim has generously shared with us his valuable experience in the organization of the ICCS-

IX Conference that was held in Malaysia in 2007. 

Prof. Wafik Younan helped in putting together the Local Organizing Committee (LOC), 

which consists of members from several Egyptian universities and government agencies 

including Ain Shams University, Al-Azhar University, The American University in Cairo, Cairo 

University, CAPMAS, Helwan University, and IDSC. Over the 15 months prior to the 

conference, the LOC has held monthly meetings at Cairo University’s Institute of Statistical 

Studies and Research, where Dr. Amani Moussa and Dr. Mahmoud Riyad were the primary 

hosts.  

Dr. Wafik Younan also served as the Treasurer. We are very grateful for the following 

organizations for their financial and other support: AUC, the Egyptian Ministry of Tourism, 

IDSC, the Islamic Development Bank. Mr. Amr Agamawi of IDSC was instrumental in fund 

raising and administrative activities and has so ably taken care of various logistics and attention 

to details. Dr. Mostafa Abou El-Neil, Mr. Waleed Gadow, and the multimedia team of IDSC, 

were responsible of the design and printing of various publications including posters, brochure, 

and the Book of Abstracts. Eng. Medhat El Bakry, Eng. Ibrahim Hamdy, Eng. Ahmed Khalifa, 

the information system and communication team of IDSC, and Eng. Mai Farouk, of AUC, were 

responsible of maintaining and updating the website of the conference. Lamyaa Mohamed Sayed 

prepared the list of contributors. Finally, the staff at the Office of AUC’s Vice Provost (Samah 

Abdel-Geleel, Basma Al-Maabady, Sawsan Mardini, Dahlia Saad, and Nancy Wadie) helped 

with the correspondence and various other organizational details. We apologize if we left out 

some of the people who have provided us with help. This omission is, of course, not intentional. 

 

Zeinab Amin and Ali S. Hadi, Joint Editors 

Cairo, Egypt 

July 2010 
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THE FITTING OF BINNED AND CONDITIONAL INCOMPLETE MIXTURE DATA  
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ABSTRACT 

 

Incomplete data analysis covers a wide variety of problems that are often seen in practice, one 

such example is the fitting of binned data where each observation is assumed to have been raised 

from one of k  different groups. As each of the data units and their sources (or, the source of at 

least some units) is being unobservable, this can be treated as a missing data problem. Finite 

mixture distributions are typically used to model this sort of multi-source data, see (Little and 

Rubin, 2002). The missing of data leaves the favorite likelihood estimation with no closed form 

solution. The Expectation-Maximization (EM) algorithm proved to be one of the most 

convenient and flexible tool to provide the ML estimates. This paper deals with two different 

types of incomplete mixture data, the binned (grouped) and conditional (grouped with some extra 

sub-frequencies) normal mixture data, from both theoretical and application point of view. The 

additional information in the form of sub frequencies, may lead intuitively to a further 

improvement of the performance of the EM procedure. The procedure has been applied to a 

simulated data set. 

 

Keywords: EM algorithm, Binned Data, Conditional Data, Incomplete-data and Mixture 

Distribution. 

 

 

1. INTRODUCTION 

 

Binned and conditional data arise frequently in a wide variety of application settings since many 

measuring instruments produce quantized data. For both binning and conditional data, one can 

think of the original "raw" measurements as being masked by the binning processes and hence it 

is natural to think of this problem as one involving incomplete-data. 

The EM procedure is an obvious candidate for finite-mixture model fitting. The theory of 

using EM for fitting maximum likelihood finite-mixture models to univariate binned data was 

developed in McLachlan and Jones (1988). The problem in somewhat simpler form was 

addressed earlier by Dempster et al (1977) when the EM algorithm was originally introduced. 

The EM algorithm is a very general iterative algorithm for parameter estimation by maximum 

likelihood and it formalizes an intuitive idea for obtaining parameter estimates when some of the 

data are incomplete. The EM algorithm is a hill-climbing approach, thus it can only be 

guaranteed to reach a local maxima. To reach the global maxima, when there are multiple 

maximas, clearly depends on the starting values. When there are multiple local maximas, it is 

often hard to identify a reasonable starting value. Many strategies have been set down for 

selecting good initial values. Our strategy to compare the performances of binned and 

mailto:emhemmedy@yahoo.co.uk
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conditional EM procedures is to try random set of initial values which is deliberately selected to 

be far from the actual parameter values. For more recent applications, see Juan Du (2002), 

Myung (2003), and J. Andrew (2005). This paper is aiming to address and demonstrate the fitting 

of finite mixture distributions to binned and conditional data sets by the method of maximum 

likelihood using the iterative EM technique. 

 

2. FINITE MIXTURE DISTRIBUTION 

 

The finite mixture models are being increasingly used to model the distributions of wide variety 

of random phenomena, where each observation is believed to belong to one of several different 

types, each of which has its own distribution. A natural way is to assume that the data are drawn 

from a finite mixture distribution. The observed outcomes, x1, x2, …, xn, of a random variable X 

are assumed to have come from a mixture of a finite number, say k of groups with mixing 

weights 1, 2, ..., k. The finite mixture density of X takes the form, 
 

   ii

k

1i
i

θ; xfπ;xg ∑


 , with 110 and  


k

1i
ii ππ . 

 

The complete collection , of the unknown parameters is need to be fully estimated, where 

 ..;)θ,( k...,2,1,iiiπ   
 

3. INCOMPLETE DATA PROBLEM 

 

The problem of missing data is one of the most encountered phenomena in practice where 

observing the complete data in a real study is the exception rather the rule. Thus, in many 

situations, the available data sets are "incomplete" that is the observed part of the data contains 

only partial information about the phenomena under study. 

We begin by assuming that Y=( Ymis, Yobs) is the complete data specification follow some 

parametric probability function, where Ymis denotes the missing part of data, when sampling 

from a mixture this could be an original "raw" data or their component-membership or both and 

Yobs denotes the observed part of the data. The fitting of binned mixture data is obviously an 

example of incomplete data; see Titterington and Makov (1985). 

 

3.1 Binned Mixture Data 

 

Data of a mixed population is said to be complete if for every item, both the measurement x and 

its component membership are observed. One example of an incomplete data is the binned data, 

where data are collected or transformed into frequencies located in disjoined areas Xj; j=1, 2, …, 

r. called bins. In binned data structure, the raw data and their component membership are not 

observed. The only available data is the set of frequencies nj, where each frequency represents 

all the outcomes xi; i=1, 2, …, k (from the entire set X ) which belongs to the bin Xj. For given  

                    and the marginal distribution of the random variable X, it is assumed that the set of 

frequencies nj has a multinomial distribution with probability Pj() of an observation falling in 

the j
th

 bin. The corresponding likelihood function then takes the form, 

 

 

k

in 1 jn
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3.2 Conditional Data 

 

Conditional data are binned data enhanced with some additional sub-frequencies. These extra-

information are believed to bring further improvement to the overall estimation. In this context, 

the unobservable outcomes xij1, xij2, ..., xijnij, which supported by Xij to represent the observations 

made by the i
th

 component and falling in the j
th

 bin, are to be measured as sub-frequencies nij 

conditioned on the source which they have come from. The sub-frequencies nij are to be 

characterized by the random variables W ij which has the following probability function, 
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where P ij() denotes the probability that an individual known to be from the i
th

 component falls 

into the j
th

 bin. 

 

 

4. EM ALGORITHM 

 

For the binned and conditional mixture, the form of likelihood functions is usually complicated, 

and hence a closed form solution to the normal equations cannot be found. Numerical techniques 

can then be applied. The EM algorithm is a broadly applicable approach to the iterative 

computation of MLE’s, useful in a variety of incomplete-data problems.  The aim of the EM 

algorithm is to find parameter values which maximize the “manufactured” complete data log 

likelihood in the E-step. As the complete data log likelihood is based partly on unobservable 

data, it has been replaced by its conditional expectation given the observed data. Starting from 

suitable initial parameter values, the E- and M-steps are repeated until convergence. The main 

idea of the EM algorithm is to maximize the incomplete log-likelihood indirectly by maximizing 

the expected complete log-likelihood function. The general relationship between mixtures and 

the EM algorithm has been covered in a number of sources, for more details see McLachlan and 

Basfor (1988), Everitt and Hand (1981), Titterington, et al. (1985), and McLachlan and Krishnan 

(1997). 

One way to assess the quality of the estimates in the binned data context is to obtain their 

standard errors, for this an estimate of the information matrix is required. For detailed discussion 

concerning the calculation of this matrix, see McLachlan and Krishnan (1997). 

 

5. ML ESTIMATES FOR MIXTURE BINNED DATA 

 

This section describes the use of the EM-algorithm to obtain the ML estimates of the binned 

mixture data. Mixture models could be fitted via EM algorithm for observations that takes the 

form of binned data. The relationship between EM algorithm and binned data has been 

developed in the mixture case by Mclachlan and Jones (1988). On the basis of what has been 
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illustrated earlier, if all the frequencies nj were observable, the corresponding log-likelihood 

function takes the form, 
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The above log-likelihood has no explicit solution. This problem for the binned mixture data can 

be solved within the EM framework by introducing new random variables, X js, j=1, 2, …, r , 

s=1, 2, …, nj, representing all the nj unobservable individual observations in the j
th

 bin, and a 

hidden variable Z js=(Z1js, Z2js, ..., Zkjs), with
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 where Z ijs equals one for X js belongs to 

the i
th

 component and equals zero otherwise. In the light of the above, The complete log-

likelihood function is simplified further to, 
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Given the complete data log-likelihood function, the E-step of the EM algorithm at the (h+1)
th

 

stage requires taking its expectation conditional on the observed data and current values of 
(h)

. 

This conditional expectation (the Q-function), takes the following form, 
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The M-step aims to estimate the unknown parameters by maximizing the Q-function. This 

sometimes may not be easy. For the mixture normal densities, using the Lagrange multiplier, 

differentiate the Q-function with respect to each of the unknown parameters, equating the 

resulting expressions to zero and performing some simple algebra. The required estimates are 

given as, 
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6. ML ESTIMATES FOR CONDITIONAL DATA 

 

It seems interesting to see the influence that would have to be on the estimation process when an 

extra information to the binned data, in the form of sub frequencies, is available. In order to 

formulate the observed likelihood function under the conditional data structure, suppose that in 

addition to the bin frequencies nj, only the sub frequencies nlm , which represent the number of 

observations contributed by the l
th

 component ( k l0 ) of the mixture model that fall in the m
th

 

bin (0<m ≤r), are to be known. Accordingly, the log-likelihood function of the observed data 

takes the following form, 
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The above form of the log-likelihood function, clearly ,does not yield an explicit solution. This 

estimation problem can be solved within the EM framework by introducing the set of the missing 

component frequencies n ij;  ilj, jm and the variables Xij. 

 

By treating W ij as a random variables corresponding to the component sub-frequencies n ij; i=1, 2, 

…, k, j=1, 2, …., r the complete data log-likelihood can be written as,  
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On the (h+1)
th

 iteration of the EM algorithm, the E-step requires the calculation of Q-function, 

the conditional expectation of the complete log-likelihood, given the observed data of 

frequencies and the current value 
(h)

 of , it follows that, 
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It is well known that, at each bin the conditional expectations of the random variable W ij, given 

the set },;n{ jjiij ml  of the observed component frequencies and the bin frequency n j  has the 

following form, 
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where )jn,},;ijn{|ij()(E(h)
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For mixture normal densities, by differentiating Q-function with respect to each of the unknown 

parameters, equating the resulting expressions to zero and by performing some simple algebra, 

we obtain, 
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7. APPLICATIONS 

 

One desirable way to judge the performance of the above mentioned procedure is to apply it to 

different simulated data sets with known features. This will provide a direct comparison between 

the actual and estimated parameter values. Furthermore, it seems interesting to develop the 

application from binned to conditional data case, since conditional data bring additional 

information to the binned data problem which then intuitively believed to improve the 

estimation. The procedure has been applied to many simulated data sets and to avoid tedious 

repetitions, this section deals with a single set of simulated data obtained from a three-

component normal mixture density, the first two components are totally overlapped while the 

third one is well separated from them. A data set of size 700 has been simulated from a 3-

component normal mixture density with, μ1=μ2=0, μ3=6, σ1
2
=1, σ2

2
=4, σ3

2
=4 and π1=0.2, π2=0.5. 

The overlap in this data set is very obvious as μ1= μ2. The aim is to estimates of the parameters 

and their standard errors using the EM procedure. With the presence of this overlapping, the 

fitting is not as easy as that of the well separated components. Furthermore, the binned EM may 

face a harder task until convergence compared to the conditional EM. The Fortran program given 

by Mclachlan and Jones (1988) has been developed to carry out the estimation for the 

conditional binned data case. Table (7.1) summarizes the 700 data points with 18 equal-width 

intervals whereas Table (7.2) illustrates the results of the fitting. 

 

Table (7.1): The empirical binned data of 3-component normal mixture. 

Bin 1        2        3       4       5        6       7        8       9 

Upper Boundary -5.5   -4.5   -3.5   -2.5   -1.5   -0.5    0.5    1.5    2.5 

Frequency 2        3       11      26     46       92     120    105    62 

 

10      11     12    13     14    15    16    17    18 Total 

3.5    4.5    5.5   6.5    7.5   8.5   9.5  10.5  11.5 ------ 

40      36    34     39     34     31    11     5     3 700 
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Table (7.2): The fitting’s output of the binned mixture data. 

Parameter Symbol 
True 

value 

Initial 

value 
Estimate St. Error 

Means 

µ1 

µ2 

µ3 

0 

0 

6 

0 

5 

8 

0.14015 

5.39071 

7.30659 

0.23152 

16.3719 

19.3710 

Variances 

σ1
2
 

σ2
2
 

σ3
2
 

1 

4 

4 

2 

2 

2 

3.45548 

2.33871 

2.49526 

0.46026 

15.2593 

12.4985 

Mixing 

Proportions 

π1 

π2 

π3 

0.2 

0.5 

0.3 

0.333 

0.333 

0.334 

0.73740 

0.13676 

0.12583 

0.05890 

2.54197 

2.50056 

Number of Iterations 106 

Max of Log-likelihood   -1761.2380 

Residual 0. 166748 

 

 

To compare the performances of binned and conditional EM procedures, the initial values are 

deliberately selected to be far from the actual parameter values. As the new information become 

available, the attentions are turned to the case of conditional EM. Table(7.3) represents the 

conditional data structure and its fitting’s summary is then illustrated in Table(7.4), the starting 

values are the same as those proposed for the binned data case. Indeed, the estimates are 

improved (as expected) and hence confirm the superiority of the conditional EM. 
 

Table (7.3): The simulated conditional data of the 3-component normal mixture. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*The symbol # represents the missing sub frequencies. 

Bin Upper Boundary Frequency 
Components 

      1                     2                3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

-5.5 

-4.5 

-3.5 

-2.5 

-1.5 

-0.5 

 0.5 

1.5 

2.5 

3.5 

4.5 

5.5 

6.5 

7.5 

8.5 

9.5 

10.5 

11.5 

2 

3 

11 

26 

46 

92 

120 

105 

62 

40 

36 

34 

39 

34 

31 

11 

5 

3 

# 

0 

# 

# 

# 

# 

49 

# 

9 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

38 

# 

# 

# 

43 

# 

# 

# 

0 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

1 

10 

# 

# 

# 

# 

# 

# 

# 

# 

# 

Total ---------- 700 ---------- 
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Fig(7.1) displays the estimated mixture model (full line) for the binned and conditional EM, 

respectively. Clearly, both estimated densities are successfully capturing the shape of the 

corresponding histogram of the observed data. The outlook of the fits for both cases is similar 

except at the peak of the figures and this reflects the benefits of the additional information. The 

dashed curves at both figures represent the estimated component densities where the partial and 

complete overlapping are present. Obviously, there are significant differences between the 

outputs of the two EM procedures, where in Fig(7.1)(a) it seems that the overlapping is mostly 

between the second and the third components, where as Fig(7.1)(b) shows a total overlapping 

between the first two components and a well separated third component, which is more 

consistent with the actual simulated features. 

The performances of the EM procedure, in terms of convergence speed for both binned and 

conditional EM are presented on the basis of the number of iterations (cycles) needed to reach 

the required convergence. The history of the observed log-likelihood (solid line) based on the 

binned and conditional data can be seen in Fig(7.2). 
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Fig (7.1): The histogram and the estimated mixture of three normal distributions via (a) the 

Binned EM. (b) the Conditional EM. 
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(a) for the Binned EM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) for the Conditional EM. 

 

Fig (7.2): The history of log-likelihood versus the number of iterations:.  

 

 

As anticipated, the conditional EM tends to converge more rapidly compared to the binned EM. 

This is another advantage to the conditional EM procedure over that of the binned EM. 

 

 

8. CONCLUSIONS 

 

This paper provides a simple and straightforward way to deal with both binned and conditional 

normal mixture data by employing the combination of maximum likelihood and the iterative EM 

estimation procedures. The main features that could be concluded here are, 
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Table (7.4): The fitting’s output of the conditional mixture data. 

 

Parameter  Symbol 

True 

valu

e 

Initia

l 

value 

Estimate St. Error 

Means 

µ1 

µ2 

µ3 

0 

0 

6 

0 

5 

8 

0.0792602 

0.0189974 

5.9219180 

0.33188 

0.41602 

0.49253 

Variances 

σ1
2
 

σ2
2
 

σ3
2
 

1 

4 

4 

2 

2 

2 

1.0568550 

3.9703740 

4.2763790 

0.95802 

0.97192 

1.20252 

Mixing 

Proportions 

π1 

π2 

π3 

0.2 

0.5 

0.3 

0.333 

0.333 

0.334 

0.1934000 

0.5103550 

0.2962450 

0.19387 

0.21792 

0.05271 

Number of Iterations 22 

Max of Log-likelihood -1811.2760 

Residual 0. 050407 

 

 

1. Simulation results show that the EM algorithm does not perform well in the case of 

binned mixture data and performs very well in the case of conditional mixture data with a 

substantial computational savings and improvement of the overall estimation quality. 

2. A direct comparison between binned and conditional EM algorithms showed that the 

conditional EM is less sensitive to the starting values than the binned EM, since the 

involvement of an additional information may provide the EM algorithm with extra 

strength to recover from any bad start. 

3. The EM algorithm is usually simple to implement and its convergence is most likely 

guaranteed especially for well selected initial values. 

4. The performance of the EM algorithm in the case of well-separated mixture components 

is much better than that in the case of heavily overlapped mixture components. This is 

partly due to the fact that the EM faces difficulty to discriminate between component 

memberships of the data items in the overlapped regions. 

5. To judge the performance of the EM algorithm, the following measures are helpful, the 

maximum value of the estimated log likelihood, the standard error of the estimated 

parameters and the number of the required iterations. Finally a visual inspection of the 

closeness of the estimated curve of the suggested mixture model to the binned-data 

histogram enhanced with a goodness of fit test based on a chi-square distribution. 

 

 

  



582 

 

REFERENCES 

 

Andrew, J. R. and William A. L.(2005). A General Class of Multinomial Mixture Models For 

Anuran. Calling Survey Data Ecology, 86(9),pp. 2505-2512. 

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum Likelihood from Incomplete 

Data via the EM Algorithm. J. R. Statist. Soc., B39, 1-38. 

Everitt and Hand. D. J. (1981). Fitting Mixture  Distributions, Monographs on Applied 

Probability and Statistics. Chapman and Hall & Methuen, Inc. 

Juan Du.(2002). Combined Algorithms For Fitting  Finite Mixture Distributions. B. Sc. Project, 

McMaster University. Canada. 

Little, R.J.A., and Rubin, D.B. (1987). Statistical Analysis with Missing Data. New York: Wiley. 

McLachlan, G.J., and Jones, P.N. (1990). Algorithm AS254:Maximum Likelihood Estimation 

From Grouped And Truncated Data With Finite Normal Mixture Model. Appl. Stat. 39, No. 2, 

273-312. 

McLachlan, G.J., and Krishnan, T. (1997). The EM Algorithm and Extensions.  New York: 

Wiley. 

McLachlan, G. J. and Basford, K. E. (1988). Mixture models. Marcel Dekker, Inc.  

McLachlan, G.J., and Jones, P.N. (1988). Fitting Mixture Mode to Grouped and Truncated Data 

via EM Algorithm. Biometrics 44, 571-578. 

Titterington, D.M., Smith, A.F.M., and Makov, U.E. (1985). Statistical analysis of finite mixture 

distributions. New York: Wiley 



583 

 

Proceedings of the Tenth Islamic Countries Conference on Statistical Sciences (ICCS-X), Volume II, 

The Islamic Countries Society of Statistical Sciences, Lahore: Pakistan, (2010): 583–583. 

 

LOOKING AT OUTLIERS 

 

Nick Fieller 

Department of Probability & Statistics 

University of Sheffield 

Sheffield, S3 7RH, U.K. 

E-mail: n.fieller@sheffield.ac.uk 

 

 

ABSTRACT 

 

Outliers in low dimensional moderate sized data sets are easy to see since they 'stick out' in some 

direction or other. A simple scatter plot of  data on a single or a pair or perhaps a triple  of 

components will reveal them and it is then easy  to assess informally whether or not they 'matter' 

in the sense of whether they are likely to affect later analyses  adversely.  However, once one 

moves beyond 'low dimensional' to moderate or high numbers of dimensions outliers are difficult 

to see and even more difficult to assess even informally whether or not they matter. In this 

context 'low dimensions' means certainly single figures and possibly outliers in five or six 

dimensional data sets can prove troublesome in this respect. Consideration of a union-

intersection test approach for multivariate outliers provides a route for determining an effective 

'outlier displaying component' (essentially the linear discriminant function between the outlier 

and the other data points). This basic idea can be exploited for display and informal assessment 

purposes and can be extended to handle multiple outliers and take advantage of robust estimation 

techniques.  
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ABSTRACT 

 

Large aggregated data do not always provide unbiased estimators for the individual level 

parameters, such as variance, covariance, slope, and correlation coefficient. A small individual 

level data set will not provide efficient estimators for the individual level parameters. There are 

conditions under which the aggregated data will provide unbiased estimators for the slope, 

correlation coefficient, or both. Under these conditions, using the aggregated data can be more 

efficient by itself than using only small sample of individual level data. The efficiency can even 

increase by using a combination of both data sets. The purpose of this study is to use different 

approaches for testing the existence of these conditions by using large set of aggregated data and 

small set of individual level data, in order to provide a consistent estimator for slopes. The 

approaches include the proportionality of covariance matrices test and the hierarchical likelihood 

ratio test, assuming a hierarchical linear model under multivariate normal distribution. By using 

these tests a model selection approach is very promising as the efficiency gain can reach more 

than 160% compared by using the individual level data only or even using the consistent 

estimates of the aggregated data. 

 

Keywords: Aggregation bias, hierarchical linear model, hierarchical likelihood ratio test, 

proportionality of covariance matrices. 

  

1. INTRODUCTION 

 

In many studies, data are available at both the individual level and at the group level, with 

individuals belonging to groups, such as factories, clinics, schools or any other group level. 

Studies limited to characteristics of groups of individuals are usually termed ecological studies. 

A major concern about ecologic studies is that individual level data are not available on the joint 

distribution of the variables of interest within the group. Using the aggregated level data for 

individual inference may cause the problem of ecologic fallacy, which Morgenstern (1998) 

defines as  “the mistaken assumption that a statistical association observed between two ecologic 

(group-level) variables is equal to the association between corresponding variables at the 

individual level”.   Although research on this topic started 50 years ago with Robinson (1950), 

only recently has this area of research attracted the attention of scientists in diverse fields such as 

epidemiology, econometrics, politics, and sociology. These fields differ in how they treat the 

problem of ecologic inference, and within each field there is also a divergence in the adopted 

approaches.  

The ecologic fallacy is sometimes called “aggregation bias” if the aggregated measures are used 

as the outcome in the analysis, as in this paper. 

mailto:mayabaza@hotmail.co
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The goal of the paper is testing for the aggregation bias based on using large set of 

aggregated data to estimate individual level parameters by using only small set of individual 

level data, focusing on the slopes of multiple regression models. 

The structure of the paper is as follows: the second section gives a review of the aggregation 

data problem, third section covers the framework adopted in the paper, fourth section discusses 

the aggregation bias under the framework, fifth section w discusses the conditions under which 

aggregated data will provide unbiased and consistent estimators, sixth section introduces the 

testing approaches, and finally last section presents the simulations results and conclusions. 

 

2. PROBLEMS OF ECOLOGIACAL AND AGGREGATED DATA 

 

For the rest of this paper we assume that the aim of the study is to get estimators of the individual 

level parameters. The individual level parameter estimators based on aggregated data may be 

subject to bias for reasons described below. 

 

2.1 Specification Bias 

 

Pure specification bias arises from assuming an incorrect ecological model. This commonly 

happens when we assume that the ecological relationship takes the same form as the individual 

relation. In some cases this assumption holds, such as in the case of the linear additive model 

(fixed parameters and no interaction). If i indexes the group (or group, area, etc), and j indexes 

the individual unit in group i, then the relationship at the individual level is given as follows: 

 

          ( | )ij ij ijE Y X X     

where k is the number of groups, ni is sample size in group i, i=1, 2,…, k,  j=1,…,ni, and  
1

k

i

i

n




=N, 
1

1 in

i ij

ii

X X
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  , 
1

1 in

i ij

ii

Y Y
n 

   

 

Data aggregation will lead to the following relationship ( | ) ii iE Y X X   .   

 

This is the same relationship; thus the ecological study provides an unbiased estimate for the 

individual level parameters  and   . In the case of non-linear models this simple relation does 

not occur. For example, in the log linear model (Sheppard, 2001), the individual relationship is 
 

         ( | ) exp( )ij ij ijE Y X X   ,  

 

this does not imply 
 

         ( | ) exp( )ii iE Y X X   .  

 

The following model should be used instead: 

 

        
1

1 2

1

( | , ,.., ) exp( )
i

i

n

i i i in i ij

j

E Y X X X n X 
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2.2 Effect Modification Or Statistical Interaction 

 

Product term covariates are usually discussed under the terms “effect modification”. Consider 

the linear model  

 

          ijijijijijijij WZXWZXYE  ),,|( ,  

 

where Wij is the interaction term Xij*Zij. At the ecological level the above equation will result in 

the following: 

 

          iiiiii WZXWZXYE  ),,|( ,  

 

where iW  is the average of Xij x Zij in group i. Since we don’t usually have the data at the 

individual level, the iW  term is usually not available. Instead the ecologic study might substitute 

ii ZX *  for iW , which yields biased estimators for the coefficients unless X and Z are 

uncorrelated within-groups (Greenland, 1992).  

 

2.3 Contextual Effect 

 

Contextual effect occurs when an individual outcome is affected, not only by its own exposure, 

but also by the average exposure in the same area (Wakefield et al., 2001): 

 

          ( | )ij ij ij iE Y X X X     . 

 

When we use only aggregated data we cannot distinguish between the effect of the individual 

exposure and the effect of the contextual average exposure. This can be easily shown under the 

linear model: 

 

          ( | ) ( )i i i i iE Y X X X X            

 

In the ecological regression, the estimate of the coefficient will be for the sum of the individual 

effect β and the contextual effect δ; we cannot estimate β and δ separately. If the model is non-

linear, with link function 

 

( ( | ))ij ij ij ig E Y X X X     ,  

 

not even the combined effect )(   can be estimated without bias using aggregated data 

without further assumptions. Richardson et al. (1987) discussed having δ=0 (i.e. no contextual 

effect) as an assumption for estimating the individual effect β. 

 

2.4 Ignoring Varying Parameters across Groups 

 

We assume in § 2.1-2.3 that the parameters of interest, γ and β, are the same in all groups. If the 

parameters vary across groups then the ecological analysis will cause ecological fallacy as well. 
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2.4.1 Different Intercepts 

 

The intercept in the linear model represents the baseline expected outcome, when all the 

covariates are assumed to have the value zero. If the baseline expected outcome changes across 

groups, an analysis using aggregated data might result in a biased estimate for the slope 

coefficient. Assume the following model: 

 

        ijiijij XXYE  )|( ,  

thus 

        iiii XXYE  )|(   . 

 

The ecological analysis yields the following ordinary least square (OLS) estimate for the slope 

coefficient: 

 










k

i

i

k

i

ii

a

XX

YYXX

2)(

))((

̂ ,  where 
k

i

i kXX / , and the same holds for Y .  

 

The subject “a” denotes that the estimator is based on aggregated data. The aggregate estimator 

is a biased estimator for the individual effect, as shown below:       
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where 
k

i

i k


  . The bias given here is from the regression of the intercept i  on the iX . The 

bias in this case can inflate or deflate the slope and even change its sign depending on the pattern 

change of the intercepts across groups. If a random intercept is assumed, we can still get biased 

estimate for the slope if only aggregated data are used. 

 

2.4.2 Different Slopes 

 

If the slopes are different across groups, whether in case of systematic change or random change, 

the aggregated data cannot estimate the varying slopes.  In this case it is not clear what 

combination of the slopes should be estimated.  
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3. STATISTICAL FRAMEWORK 

 

Aggregation bias can be studied under various statistical frameworks depending on the data type 

and the statistical model used. King (1997), King et al. (1999), Gelman et al. (2001), and 

Wakefield (2004b) studied aggregation bias in dichotomous variables in 2 x 2 tables. Prentice et 

al. (1995), Sheppard  et al. (1995), Sheppard et al. (1996), Plummer et al. (1996), Guthrie et al. 

(2001), Sheppard (2001), and Wakefield (2004a) studied aggregation bias under the log-linear 

model. Greenland et al. (1994), Wakefield (2003) studied aggregation bias under a non-linear 

model. 

 

In this study we focus on studying inference using aggregated data in the hierarchical linear 

model with continuous variables using multivariate normal distribution. 

 

3.1 The Hierarchical Linear Model 

 

The hierarchical linear model was adopted in several approaches that discussed the ecological 

fallacy (or the aggregation bias) (Steel et al. 1996, Steel et al. 1996, Steel et al. 1997, 

Raghunathan et al. 2003, Gadallah 2006). The following illustrates the individual level as well as 

the aggregated level parameters under the hierarchical linear model. 

 

3.1.1 Individual Level  

 

Assume that there are k groups, and that in every group i we have ni independent multivariate 

normal random variables (Yij , X1ij, X2ij) with mean (μ1xi, μ2xi ,μyi) covariance matrix Σ, where 

j=1,…,ni, i=1,2,…,k, and 
k

i

in =N. 

Under the hierarchical linear model, the conditional distribution of Yij and X1ij, X2ij given the 

(μ1xi, μ2xi ,μyi)  is: 
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The unconditional distribution of Yij and X1ij ,, X2ij is easily found as 
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The conditional distribution of Yij given X1ij ,, X2ij, 1 2,  and xi xi yi    will be  
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The conditional distribution of Yij given X1ij, X2ij is: 
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where, 
'' 1

| ( ) ( ) ( ) ( )T

y x yy yy xy xy xx xx xy xy             

 

However, for the unconditional distribution of Yij and X1ij, X2ij the slope vector we are trying to 

estimate is 1( ) ( )xx xx xy xy

     . We call this quantity βp, where the subscript p indicates 

the case of pooled data. Here βp is generally not the same parameter as the one we get from the 

within-group data unless we have some restrictions. 

 

3.1.2 Aggregated Level  

 

Since we are assuming Yij and X1ij, X2ij are continuous, the aggregated data that we get will be 

the means. For the means, the conditional distribution given μ1xi, μ2xi ,μyi will be as follows, 

allowing ni to be different for each group i: 
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The unconditional distribution will be 
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When we use the aggregated data in the regression, we are actually using the unconditional 

distribution to regress Y  on X . In this case the conditional distribution of 1 2| ,i i iY X X  is 
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where, 1

( | )
( / ) ( / )( / ) ( / )

i i
yy i yy xy i xy xx i xx xy i xyY X

n n n n            . Equation (7) shows 

that the conditional mean and the conditional variance differ from one group to another 

according to population size.  

 

4. THE AGGREGATION BIAS 

 

In this section, estimators using the individual data will be compared with the corresponding 

estimators using the aggregated data. 

 

4.1 The Variance and the Covariance 

 

Under the hierarchical linear model, the sample variance for any variable X using the aggregated 

data )1/()( 2  kXXn
k

i

ii will provide an estimator for ,xx N k xxc   a function of the diagonal 

element in the variance-covariance matrix in equation (6), where 
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This estimator is different from the estimator of within-group variance xx . The sample 

covariance for a variable X and Y )1/())((  kYYXXn
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iii  will be an unbiased estimator 

for ,xy N k xyc  , and not for xy , where  
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4.2 The Slope and the Correlation Coefficient 

 

4.2.1 The Slope 

 

Regressing Y on X’s, conditionally on the means, produces the following equation: 
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where the slope vector is  1

w xx xy    . Using the data coming from the unconditional distribution 

of Yij and Xij leads to: 
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where the slope is 
1( ) ( )p xx xx xy xy      . 

Finally, using the aggregated data the slope from regressing Y on X ’s will follow from  
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, on its elements. Here the maximum 

likelihood estimates of B0, B1, will be different according to the assumption of equal population 

sizes ( ,   i)in n   or under unequal population sizes. Under this framework if we regress Y on 

only one of the X ’s, the least squares estimate for the slope is 
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, unless certain conditions are 

satisfied.  Same will hold for the slope in the multiple regression, where we use: 
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The aggregated slope vector will be a consistent estimator for   
1

, ,( ) ( )xx N k xx xy N k xyc c                                                                   (13) 

 

4.2.2 The correlation coefficient 

 

Raghunathan et al. (2003) differentiated between three parameters that can be estimated using 

different data sets. The three parameters are: 

*   The individual simple correlation coefficient, which is based on within-group data, 

xy
yx

xx yy




 
   

*  The total or contaminated correlation coefficient, which is based on the pooled data, 
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* The aggregated correlation coefficient, which is based on the group means, 

,

, ,

( )

( )( )
xy n k xy

yx

xx n k xx yy n k yy

c

c c

 


   




 
  

while the population ecological correlation coefficient (group means correlation) is defined as

xy
yx

xx yy




 
 . 

 

Using only the aggregated data will not provide an unbiased estimator for ρ, since 

 

2 2

( )( )
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i i i i
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E
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5. CONDITIONS OF CONSISTENT ESTIMATORS 

 

Using aggregated data will produce biased estimators for the variance and the covariance of the 

within-group unless the Ω=0; i.e. there is no between-group variation. If    and ni’s 
(i.e. the within-group population that the aggregated data is based on is large), the bias will 

decrease and will tend to zero. The within-group slope and the correlation coefficient estimated 

by aggregated data will also suffer from bias, but not in the following situations: 

a) When Ω =0 (i.e. there is no between-group variation), using the pooled or aggregated data will 

give unbiased estimator for the βi.
1
 This condition provides unbiased estimators for the variances, 

covariance, slope, and correlation coefficient. 

b) Equal correlation condition 

Assuming equal correlations condition we can get a consistent estimator for the correlation 

coefficient: Using the between covariance matrix  

 

 =   

1 1 1 2 1 1 1 1 1 2 1 1

1 2 2 2 1 2 2 1 2 2 2 1 2 2

1 2 3 1 2 3

0 0 0 0

0 0 0 0

0 0 0 0

x x x x xy x x x x xy

x x x x x x x x x x x x

xy xy yy xy xy yy

f f

f f

f f

     

     

     

      
      

      
      
      

                   (14) 

 

 for simplicity assume that there are two variables only, in this case 

                                                 
1
 By using ordinary least squares for equal population sizes or weighted least squares for unequal population sizes. 



593 

 

22
1 1 21 1 2

2 2
1 2 2 1 2 2

)

xx xx yyxx xy

xy yy xx yy yy

xx yy xx

yy xx yy

f f ff f f

f f f f f f

    

     

   

   

  
        

 
 
 
 

                                   (15) 

where 1 2 3, , 0.f f f   Since the correlation coefficient is the same in both covariance matrices, 

using the aggregated data will provide a consistent estimator for the correlation coefficient. 

 

c) When the components of the unconditional variance and covariance are in a constant ratio. 

More specifically, writing 

 

x xVar(X)=A+B=E[Var(X| )] Var[E(X| )]   

x y x yCov(X,Y)=A`+B`=E[Cov(X,Y| , )] Cov[E(X,Y| , )]    , This condition  is A`/A=B`/B. 

 

Under the assumption that the association of X’s and Y at the individual level does not vary from 

one group to another, Richardson et al. (1987). Under this condition Ω =f Σ, where

1 2 3f f f f    which is a special case of the previous condition, where all elements in the two 

matrices are proportional. The aggregated data will provide consistent estimators for the slope 

and the correlation coefficient. We will call this condition the proportionality condition. 

 

If the condition in a) or c) is met then. i a p     

This follows from 

 

x xVar(X)=A+B=E[Var(X| )] Var[E(X| )] xx xx                                            (16) 

 

x y x yCov(X,Y)=A`+B`=E[Cov(X,Y| , )] Cov[E(X,Y| , )] xy xy                            (17) 

 

Assuming the ratio condition the following is proved: 

         

 
1

1 1 1

1 1 1

, , , ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w xx xy

p xx xx xy xy xx xx xy xy xx xy

a xx N k xx xy N k xy xx N k xx xy N k xy xx xy

f f

c c c f c f









  

  

  

              

                

           (18) 

 

Under the previous conditions, consistent and efficient estimators can be derived from the 

aggregated data only if we know that the condition is satisfied; otherwise, we may get 

completely biased estimators. 

The following section discusses the available tests for meeting these conditions under the 

multivariate normal model in case of a fixed within covariance matrix Σ. These tests will allow 

us to test whether the aggregated data will provide unbiased or consistent estimators for the 

different parameters or not, focusing on the slopes. The tests require the availability of small set 

of auxiliary individual level data in addition to aggregated data based on large population sizes.  
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6. TESTING APPROACHES 

Federer (1951) studied testing the proportionality of the covariance matrices by solving the 

maximum likelihood approach for two groups and dimension of the matrix not exceeding 3. The 

approach was based on the application of the likelihood– ratio test under the normality 

assumption. The test computes the MLE of the covariance matrices and proportional constant 

under the null and the alternative. It then applies the likelihood ratio test. 

Manly and Rayner (1987) and Rayner and Manly (1990) used a hierarchical likelihood ratio 

test for comparing several covariance matrices. They partitioned the likelihood ratio test into 

three components, thus allowing for nested models for covariance matrices, testing equal 

correlations, proportional matrices, and equal matrices. The paper assumed data consistent with 

multivariate normality. 

Flury (1988) introduced a hierarchy of similarities among several covariance matrices, 

defining five levels of similarities among k covariance matrices: level 1 for equality, level 2 for 

proportionality, level 3 for common principle components (CPC), then the level 4 for partial 

CPC, and the level 5 for arbitrary covariance matrices. 

For 2 x 2 covariance matrices, Flury (1983) considered various types of relationships 

between covariance matrices. One of these was equality of the regression slopes in two or more 

populations without assuming the equality of residual variance, which will be the case if the ratio 

condition is satisfied. In 1987 Erikson used the likelihood ratio test to test for proportionality. 

The paper provided an algorithm and proved its convergence and uniqueness of the maximum 

likelihood estimate.  

 

6.1 Testing for Matrices Equality 

 

Let 
11 2 1 1, ,..., ~ ( , )n dx x x N   and

21 2 2 2, ,..., ~ ( , )n dw w w N   . We can use a likelihood ratio test 

for testing the equality of the two, or more
2
, dispersion matrices without considering any 

inferences among the two populations’ means. 0 1 2: ( )H       The likelihood ratio statistic is  

1 2

1 2

/ 2
/ 2 / 2

1 2

12/ 2 / 2 / 2

1 21 2

1 2

ˆ

ˆ ˆ

,  ,  and

n
n n

n n n

Q Q
l c

Q Q

where n n n


 

 

 

                                                                                  (19) 

1 2

1 1 1

2 2 2

/ 2

12 / 2 / 2

1 2

ˆ ( )( ) '

ˆ ( )( ) '

i i

i

i i

i

nd

n d n d

Q n x x x x

Q n w w w w

n
c

n n

    

    






 

The distribution of –2log(l) is asymptotically chi-square with degrees of freedom ½ d (d+1) 

under the null. A modification of the statistic, which is a better chi-square approximation, is done 

using the degrees of freedom associated with Qi, using ni-1 instead of ni, which will lead to an 

unbiased test. 

                                                 
2
 See Seber 1984 chapter 9. 
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Another chi-square approximation will be using a multivariate analogue of Bartlett’s test of 

homogeneity (Seber 1984, p.450) -2(1-c1) log M, where M is the likelihood ratio after degrees of 

freedom modification and  

 

c1=
2

1 12 3 1
{ }

6( 1)
i

i

d d
g g

d

  



 , where 1,i i i

i

g n g g   . 

 

If the equality of the two matrices is met, this means that Ω = 0. The sample covariance matrix 

based on the aggregated data will provide unbiased estimators for the same individual parameters 

and with different efficiencies.
3
  If Ω = 0, or if the proportionality condition is satisfied, 

combining the slope estimators of the aggregated data and the auxiliary data using the degrees of 

freedom will provide more efficient estimates
4
 than using the only the individual level data. 

 

 6.2 Testing for Proportionality 

 

Flury (1988) and Erikson (1987) introduced a likelihood ratio test for testing the proportionality 

of two or more matrices. 

Let Si, i= 0,…, k are independent p x p matrices with 1~ ( , )i p i i iS Wishart n n  , where i  are 

positive definite covariance matrices. For testing the null hypotheses 0 1: i iH     i= 2,…,k, 

where the i ’s are unknown positive constants, the spectral decomposition of every covariance 

matrix can be written as follows: 

 

             1

1

'

( ,..., )

i i

i i ip

ij i j

diag

 

 

  

  

 



, where i=2,…,k  j=1,…,p 

 

since the proportional model can be looked at as an offspring of the CPC (Common Principal 

Component) model.  Flury (1988) derived the log-likelihood ratio statistic for testing the null 

versus the alternative of arbitrary covariance i  to be: 
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1 1
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                                                                  (20) 

 

The test statistic, under the null hypothesis is asymptotically chi-square with degrees of freedom 

                                                 
3
 See Appendix 1. 

4
 See Appendix 2. 



596 

 

2( 1)( 2) / 2k p p   .  

Manly and Rayner (1987) and Eriksen (1987) proposed a different parameterisation for the 

same test and gave an algorithm for finding the maximum likelihood estimates. They also proved 

the convergence of the algorithm and uniqueness of the maximum likelihood estimator. Boente 

and Orellana (2003) proposed robust estimator of the proportionality constant and derived the 

asymptotic distribution. Two estimators will be studied in the paper 
 

1/
* * *

,

| /( ) |
ˆ

| /( 1)* |

p

N k

W N k

B k c


 
  

  

,                                                                                  (21) 

 

another estimator is 
 

* 1
,

* *

( 1)*( )
ˆ *

( )

n kk ctrace W B

p N k


 



                                                 (22) 

 

where p is the covariance matrix dimension. 

 

6.3 Hierarchical Likelihood Ratio Test 

 

In 1987 Manly and Rayner proposed a hierarchical likelihood ratio test to show that the test for 

equality matrices can be more informative by hierarchically partitioning it into three 

components. They based their test on having random samples from k multivariate normal 

populations each with d variables 1 2, ,..., dX X X  with vector j  and covariance matrix j  for 

population j, j= 1, …, k. The following table shows the nested models for covariance matrices: 

 

Table 1: The Hierarchical Likelihood Ratio Test 

Model The Null The Test Statistic Degrees of Freedom 

0 
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½ (k-1)d(d-1) 

3 All different *

1 2 3 0

1

ˆlog( / )
k

j j

j

T T T T n S


      ½ (k-1)d(d+1) 

0 No between-group variation                   1 Proportional matrices 

2 Equal correlation                                     3 Different matrices 

 



597 

 

Here the S’s are the sample covariance matrices after correcting their bias by dividing sums of 

squares and cross- products by degrees of freedom. 

Under the assumption of having fixed a within-group covariance matrix, meeting any of the 

covariance matrices relationships mentioned in the previous section will allow us to use the 

aggregated data estimators in combination with the individual data and receive asymptotically 

high relative efficiency for the different estimators.
5
 

In this paper both approaches of Erikson (1987) and the hierarchical likelihood ratio test 

(HLRT) for some suggested covariance matrices will be applied. 

 

 

7. RESULTS AND CONCLUSIONS 

In this section simulations are done to apply Erikson’s and HLRT approaches to test for 

aggregation bias by using within covariance  matrix of a small individual level data and the 

between covariance matrix of the aggregated level data.
6
 

 

7.1 The Data  

 

Assume: 

 

1) We have k groups, and within every group i, we have ni independent multivariate normal 

random variables (X1ij, X2ij ,Yij),  with mean  ( μ1xi, μ2xi ,μyi
 
)
 
 and covariance matrix Σ, where, 

i=1, 2, …, k, and  j=1, …, ni, 
k

i

in =N. 

2) The group means μ1xi, μ2xi μyi are independently distributed with mean μ= (μ1x, μ2x ,μy) and  

covariance matrix Ω, and the aggregated data 1 2, ,i i iX X Y , which are based on the population data, 

are available  for all groups i=1,…, k and are based on large population sizes. 

 

Let 
* * *

1 2( , , )ij ij ijX X Y  where the j=ni+1, ni+2,…, ni+ ni
* 

denote the independent extra data from 

group i=1,2,…,k where either n
*
=0 or n

*
  ≥ 2. 

 

Let W* and B* denote the 3x3 matrices of the within-group and the between-groups sums of 

squares based on the auxiliary data. 

 

W*= 

* * *

1

* *

* * 2 * * * * * * * *

1 1 1 2 2 1 11 1 1 1 1 1

* * * * * * 2 *

1 1 2 2 2 2 21 1 1 1 1
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X X X X X X X X Y Y

X X X X X X X

  

        

  

       

    

  

     

   
*
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* * *

21

* * * * * * * * * * 2

1 1 2 221 1 1 1 1 1
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  (23) 

W* can be written in the following sub-matrices 

* *

* *

xx xy

yx yy

W W

W W

 
  
 

 

                                                 
5
 See Gadallah, M. 2006. 

6
 Even if the individual level data is a subset of the aggregated data, under the normality assumption the within and 

between covariance matrices are independent. 
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    B*=

* * * 2 * * * * * * * * * *
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Where 
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variable, and 
i

inN ** . 

A matrix B can be also defined for the between-groups variation coming from the aggregated 

data, since ni and group means are known, B=
xx xy

yx yy

B B

B B

 
 
 

. 

By taking the expectation under the hierarchical model, we find 

 

,( /( 1)) N kE B k c                                                                                      (25) 

* *

* *

,
( /( 1))

N k
E B k c                           (26) 

* * *( /( ))E W N k                                                     (27) 

 

where k* should be 2 or greater representing the number of groups that we will get the extra 

individual data from, and ** ,kN
c =  

i
i kNnN ))1(/()( **2*2* . We assume 

*

, ** nc
kN
 , extra 

sample sizes are equal across groups, and we also assume that population sizes are large enough 

that ( ,   i)in n  . 

Consistent least squares estimators for slopes will be as follows:  

The slope at the individual level 
* 1 *ˆ

yx xx xyW W   The pooled slope 
* 1 *ˆ

p xx xyT T   , where T is the 

sum of the within and the between covariance matrices. The slope at the aggregated level 
1ˆ

a xx xyB B   

 

Two approaches are applied; the Erikson’s test for proportionality and the HLRT, testing the two 

matrices * * */( )W N k  and  /( 1)B k   If the proportionality hypothesis fails to be rejected, we 

can use the aggregated data combined with  the individual data to estimate the slope as follows: 

 
* * * *ˆ ˆ ˆ[( 4) ( 4) ]/( 8)weighted a wN k k N k k                                            (28) 

 

(See Appendix) If the proportionality condition is rejected, there is a proposed method of 

moment to combine the two estimators given by Gadallah (2006), but in this paper the individual 

level data estimator will be used instead. 

In order to examine these approaches we shall assume different scenarios for the relation 

between the Ω and the Σ, 3000 simulations were done for each scenario in order to study the 

following: 

a) Comparing the efficiency of the slope estimators using only the individual level data, the 

aggregated level data, and the combined estimator if the proportionality test fails to be 

rejected. 
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b) The bias and the efficiency of the proportionality constant estimator. 

c) Comparing the power of the two tests (Erikson’s approach and the hierarchical linear 

model) 

d) The effect of the size of the individual level data and number of groups used as auxiliary 

data set. 

e) The sensitivity of the change of the diagonal elements versus the off diagonal elements. 

 

The following scenarios are applied: 

 

First Scenario: The proportionality condition is satisfied 

 

1 0.2 0.3

0.2 1 0.4

0.3 0.4 1

 
 

   
 
 

 0.2   

Second Scenario: The two proportions of variances and covariances differ slightly 

 

1 1 1 2 1 2 2 1

2 1 2 1 2 2 2 1 2

2 1 2 2 1

x x x x xy

x x x x x x

xy xy yy

f f f

f f f

f f f

  

  

  

 
 

   
 
 

 where  f1=0.8 and f2=0.10 and same   

 

Third Scenario: The variances differ un-proportionally 

 

1 1 1 2 1

1 2 2 2 1 2

1 2

2

3

4

x x x x xy

x x x x x x

xy xy yy

f f f

f f f

f f f

  

  

  

 
 

   
 
 

 where f=0.2 and same   

 

7.2 Discussion  

 

In order to study the effect of the individual data set size, the three scenarios were repeated for 

number of groups 5 with size 10 from each group, 10 groups with 10 individuals from each 

group, and finally 5 groups with 20 individuals from each group.  

Tables (2), (5), and (8) show the results of  slope estimates and its mean square error using 

aggregated data  only, individual level only, and the combined estimate if the proportionality 

fails to be rejected, for Erikson and HLRT approaches. The relative efficiency of the estimates 

was computed by comparing mean square error of the individual level data estimates with that of 

the combined estimates. 

Tables (3), (6), and (9) are for the results of estimating the proportionality constant if the 

proportionality fails to be rejected. Tables (4), (7), and (10) give the rate of failing to reject the 

null in the three scenarios.  

 

First Scenario: As seen in Table (2), when the proportionality condition is met, the aggregated 

data can be used to get consistent slope estimates with efficiency gain up to 160% than using 

only the individual level data. Both the Erikson’s and the HLRT approaches get consistent 

estimates for the proportionality constant with higher efficiency if the HLRT is applied. The 
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HLRT is more sensitive in detecting the proportionality than the Eriskson’s approach, but as seen 

in Table (4) increasing the size of the individual data set doesn’t have large influence on 

increasing the acceptance rate 

 

Second Scenario: If the proportionality factor of the diagonal (variances) differs slightly from 

the off diagonal proportionality factor (covariances), the efficiency gained by using the 

combined slope estimate decreases and its bias increase (Table (5)). Increasing the individual 

data set, either by increasing the number of groups or the number of individuals sampled from 

every group, decreases the efficiency gained by using the combined estimate, and also the bias of 

the combined estimates decreases. This decrease is due to the increase of the rejection rate and 

using the individual data only in estimating the slope (Table (7)).  

The results of slope estimates using Erikson’s approach and the HLR slightly differ, but the 

HLRT is more efficient in estimating the proportionality constant, which reflects an average of 

the diagonal and off diagonal proportionality factors.  

 

Third Scenario: The results of the third scenario (Tables 8-10) show that although the HLRT 

approach is more efficient in estimating the slope, it is less powerful in rejecting the null. The 

conclusion is reflected in the larger bias of  the slope estimates produced in the HLRT than the 

bias produced by the Erikson’s approach, since the individual level estimates are dominating the 

latter one. The power of both tests increases as the individual data size increases, whether by 

increasing the number of groups or the number of individuals sampled from each group. Finally, 

although the estimates of the proportionality constant do not differ in the two approaches, the 

variance is less in the HLRT (Table (10)). The proportionality constant estimates in the third 

scenario appear to be dominated by the average proportionality factors of the diagonal elements. 

 

7.3 Conclusions 

 

Using aggregated data to estimate individual level parameters may cause bias. Detecting the 

existence of aggregation bias is very useful in order to get consistent estimators of individual 

level parameters with higher efficiency than using only small set of individual level data. Only a 

small set of the individual level data can be enough in detecting the bias, with no preferences in 

increasing the number of groups or the number of individuals per group. 

The HLRT is more efficient in estimating the proportionality constant. In Erikson’s approach 

using the trace or the determinant (equations 21 and 22) in estimating the proportionality 

constant almost give the same results. The relationship of the diagonal values in the two 

covariance matrices, has a greater effect on the test than the off diagonal values. More 

investigation is needed in order to determine to what extent do diagonal values affect the signifi-

cance and power of the test. 

The HLRT is a more promising approach in detecting the aggregation bias, since it can be 

used in estimating the variances, covariances, and the correlation coefficients as well as the slope 

through applying all the tests. Testing the equality, proportionality of within and between 

covariance matrices is a new application and a very promising approach, not only in detecting 

aggregation bias, but also in multilevel models which needs further investigations. 
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First Scenario 

1 0.2 0.3

0.2 1 0.4

0.3 0.4 1

 
 

   
 
 

 0.2   

 

Table 2: Slope Estimation Results using Erikson’s approach and HLRT Applying the First 

Scenario 

 Slope Estimate 

using aggregated 

data 

Slope Estimate 

using individual 

data 

(true value=0.095) 

Weighted Slope 

Estimate using both 

data sets 

Relative 

Efficiency of 

Combined 

estimate 

 Erikson HLRT Erikson HLRT Erikson HLRT Erikson HLR

T 

k*=5, 

n*=10 

0.0954 

(0.0127) 

0.092 

(0.0135) 

0.0952 

(0.0247) 

0.092 

(0.0262) 

0.0952 

(0.0112) 

0.0947 

(0.010) 

2.21 2.62 

k*=10, 

n*=10 

0.0948 

(0.0135) 

0.0961 

(0.0135) 

0.0938 

(0.0125) 

0.099 

(0.0123) 

0.095 

(0.0076) 

0.0947 

(0.0071) 

1.64 1.73 

k*=5, 

n*=20 

0.0963 

(0.0134) 

0.0943 

(0.0130) 

0.0997 

(0.0121) 

0.0955 

(0.0116) 

0.0979 

(0.0074) 

0.0955 

(0.0067) 

1.62 1.73 

 The number between the brackets is the mean square error 

 The mean square error of the aggregated estimate is computed from the true aggregated 

slope  
 

 

Table 3: Proportionality Constant Estimation Results using Erikson’s approach and HLRT 

Applying the First Scenario 

 Proport. constant 

Erikson’s approach 

(true value=0.2) 

Proport. 

constant 

 Trace Determinant HLRT 

k*=5, n*=10 0.203 

(0.0037) 

0.202 

(0.0038) 

0.202 

(0.0010) 

k*=10, 

n*=10 

0.202 

(0.0040) 

0.201 

(0.0040) 

0.202 

(0.0007) 

k*=5, n*=20 0.202 

(0.0044) 

0.201 

(0.0044) 

0.201 

(0.0006) 

The mean of the proportionality constant was computed when the null fails to be rejected. The 

number between brackets presents the variance 

 

Table 4: Acceptance Rate using Erikson’s approach and HLRT Applying the First Scenario 

 Acceptance Rate 

Erikson 
HLRT 

Equality Proportionality Equal Correlation 

k*=5, n*=10 0.935 0 0.977 0.975 

k*=10, n*=10 0.917 0 0.978 0.976 

k*=5, n*=20 0.914 0 0.981 0.972 
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Second Scenario 

1 1 1 2 1 2 2 1

2 1 2 1 2 2 2 1 2

2 1 2 2 1

x x x x xy

x x x x x x

xy xy yy

f f f

f f f

f f f

  

  

  

 
 

   
 
 

 where  f1=0.8 and f2=0.10 and same   

 

 

Table 5: Slope Estimation Results using Erikson’s approach and HLRT Applying the Second 

Scenario 

 Slope Estimate 

using aggregated 

data 

(true value=0.0232) 

Slope Estimate 

using individual 

data 

Weighted Slope 

Estimate 

using both data 

sets 

Relative 

Efficiency 

Of Combined 

estimate 

 Erikson HLRT Erikson HLRT Erikson HLRT Erikson HLRT 

k*=5, 

n*=10 

0.023 

(0.0125) 

0.0254 

(0.0120) 

0.0944 

(0.0261) 

0.0959 

(0.0259) 

0.0744 

(0.0204) 

0.0755 

(0.0198) 

1.28 1.31 

k*=10, 

n*=10 

0.0238 

(0.0126) 

0.02318 

(0.0123) 

0.0949 

(0.0125) 

0.09627 

(0.0131) 

0.0880 

(0.0115) 

0.08653 

(0.0118) 

1.09 1.11 

k*=5, 

n*=20 

0.0201 

(0.0132) 

0.02318 

(0.0123) 

0.0955 

(0.0119) 

0.0960 

(0.0116) 

0.088 

(0.0110) 

0.0862 

(0.0105) 

1.08 1.10 

 The number between the brackets is the mean square error 

 The mean square error of the aggregated estimate is computed from the true aggregated 

slope  

 

Table 6: Proportionality Constant Estimation Results using Erikson’s approach and HLRT 

Applying the Second Scenario 

 Proport. constant 

Erikson’s approach 

Proport. 

constant 

 Trace Determinant HLRT 

k*=5, n*=10 0.883 

(0.742) 

0.876 

(0.731) 

0.865 

(0.0192) 

k*=10, 

n*=10 

0.883 

(1.663) 

0.872 

(1.622) 

0.879 

(0.0125) 

k*=5, n*=20 0.883 

(1.802) 

0.872 

(1.756) 

0.882 

(0.0123) 

 The mean of the proportionality constant was computed when the null fails to be rejected  

 The number between brackets presents the variance 

 

Table 7: Acceptance Rate using Erikson’s approach and HLRT Applying the Second Scenario 

 Acceptance Rate 

Erikson 
HLRT 

Equality Proportionality Equal Correlation 

k*=5, n*=10 0.519 0.897 0.977 0.580 

k*=10, n*=10 0.321 0.893 0.972 0.394 

k*=5, n*=20 0.304 0.898 0.979 0.392 

 

 



603 

 

Third Scenario 
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 where  f=0.2 and same   

 

 

Table 8: Slope Estimation Results using Erikson’s approach and HLRT Applying the Third 

Scenario 

 Slope Estimate 

using aggregated 

data 

(true value=0.0574) 

Slope Estimate 

using individual 

data 

(true value=0.095) 

 

Weighted Slope 

Estimate 

using both data sets 

Relative 

Efficiency 

Of Combined 

estimate 

 Erikson HLRT Erikson HLRT Erikson HLRT Erikso

n 

HLRT 

k*=5, 

n*=10 

0.0569 

(0.008) 

0.0553 

(0.0081) 

0.095 

(0.0259) 

0.100 

(0.0257) 

0.0878 

(0.0241) 

0.086 

(0.0183) 

1.07 1.40 

k*=10, 

n*=10 

0.0567 

(0.0082) 

0,0596 

(0.0085) 

0.097 

(0.0127) 

0.0972 

(0.0119) 

0.946 

(0.0119) 

0.0919 

(0.010) 

1.07 1.19 

k*=5, 

n*=20 

0.059 

(0.0083) 

0.059 

(0.0081) 

0.098 

(0.0117) 

0.0962 

(0.0115) 

0.0958 

(0.0110) 

0.0919 

(0.010) 

1.06 1.15 

 The number between the brackets is the mean square error 

 The mean square error of the aggregated estimate is computed from the true aggregated slope  

 

Table 9: Proportionality Constant Estimation Results using Erikson’s approach and HLRT 

Applying the Third Scenario 

 Proport. constant 

Erikson’s approach 

Proport. 

constant 

 Trace Determinant HLRT 

k*=5, n*=10 0.628 

(0.628) 

0.623 

( 0.592) 

0.612 

(0.013) 

k*=10, 

n*=10 

0.630 

(1.812) 

0.622 

(1.7669) 

0.628 

(0.012) 

k*=5, n*=20 0.633 

(1.851) 

0.624 

(1.803) 

0.628 

(0.013) 

 The mean of the proportionality constant was computed when the null fails to be rejected  

 The number between brackets presents the variance 

 

Table 10: Acceptance Rate using Erikson’s approach and HLRT Applying the Third Scenario 

 Acceptance Rate 

Erikson 
HLRT 

Equality Proportionality Equal Correlation 

k*=5, n*=10 0.399 0.166 0.696 0.772 

k*=10, n*=10 0.180 0.069 0.502 0.651 

k*=5, n*=20 0.178 0.066 0,469 0.623 
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APPENDIX 

 

1. Combined estimator for the Variance/Covariance 

 

Since W* , B*, and B follow the Wishart distribution: 

 

 * * * 2 * *( /( )) 2[( ) /( )]lr ll rrVar W N k N k        
2( /( 1)) 2[( ) /( 1)]xx lr ll rrVar B k k       for  l and r represent the three variables X1, X2 and Y. 

 

 An optimal weighted average estimate for each element of   will be corresponding 

element in  
*

* * 1

W B

N k k



  

7
, which will be more efficient than using only the auxiliary data.   

 

2. Combined Estimator for the Slope 

 

Assuming that populations have equal sizes, then 
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 (Gupta et al. (2000)) 
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Since under normality assumption the within and between covariance matrices are independent, 

then under the proportionality assumption the combined estimator will be more efficient than 

using only one estimator.
8
  * * * *ˆ ˆ ˆ[( 4) ( 4) ]/( 8)weighted a iN k k N k k           
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7
 If the individual level data is not a subset  of the aggregated data the total sample covariance matrix can be used 

instead of the within covariance matrix as an estimate for  with N*-1 degrees of freedom.  
8
 See Gadallah, M.(2006) pp 31. 
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ABSTARCT 

 

The purpose of the present study was to empirically investigate the sensitivity of commonly used 

Structural Equation Modeling (SEM) fit indices derived from Maximum Likelihood (ML) 

estimation method to the degree and type of model misspecification under different sample size 

conditions. The performance of these fit indices was examined over four levels of model 

misspecification (ranging from no error to high misspecification), two types of model 

misspecification (recursive and nonrecursive misspecification) and four levels of sample size 

(ranging from 100 to 1000). A three-factor balanced design was used in the present study with 

repeated measures over degree and type of misspecification. Data were generated using EQS 6.1 

under different model misspecifications and sample size conditions. Findings from this study 

showed that the goodness-of-fit test did not equally detect the same size of error in different 

types of models. Fit indices were less sensitive to recursive than nonrecursive misspecification 

under the same sample size and misspecification conditions. Therefore, conclusions differ 

greatly on whether there is a misspecification in the model with respect to the size and type of 

specification error in the model as well as the size of sample. Fit indices were greatly varied in 

their reliability of estimation and sensitivity to sample size. Recommendations for using specific 

fit indices are discussed.  

 

Keywords: Structural Equation Modeling, Misspecification, Goodness-of-fit, Sensitivity, Fit 

Indices, Monte Carlo Study 

  

1. INTRODUCTION 

 
Structural equation modeling (SEM) has been increasingly recognized as a useful quantitative 

method in specifying, estimating, and testing hypothesized theoretical models which describe 

relationships among variables that are substantively meaningful in the real world (Fan & Wang, 

1998). SEM is a comprehensive statistical approach to testing hypotheses about relations among 

observed and latent variables (Hoyle, 1995). It represents a broad class of models that allows 

simultaneous estimation of relations between observed and latent variables and among latent 

variables themselves (Bollen, 1989b). A structural equation model is comprised of a 

measurement model, which specifies how latent variables or theoretical constructs are measured 

mailto:heshfm@mans.edu.eg
mailto:hesham.gadelrab@bue.edu.eg
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in terms of observed variables, and a structural model, which specifies the direct and indirect 

relationships among latent variables (Schumacker & Lomax, 1996). 

 

SEM applications in substantive research include model specification, model identification, 

model estimation, and model evaluation. Model specification involves the explicit statement of 

the hypothesized relationships among the variables; both observed and latent in the model. The 

model is specified on the basis of a specific theoretical framework. A model is identified if 

model parameters that need to be estimated can be computed. This refers to the possibility of 

finding unique values of the parameters of the specified model. Model estimation involves the 

calculation of model parameters that need to be estimated, so that the estimated parameters lead 

to the sample covariance matrix. A number of different methods are commonly used to fit 

structural equation models to data. Some of more popular methods are maximum likelihood 

(ML), generalized least square (GLS), and weighted least squares (WLS). Model evaluation 

assesses overall model adequacy by showing to what extent a specified model fits the empirical 

sample data. If the model does not fit well, it could be improved through model respecification. 

Although each step in applying SEMs has been the subject of considerable discussion, the most 

heated controversies involve testing the model fit and respecification (Bollen & Long, 1993). 

There are two general classes of assumptions that underlie the statistical methods used to 

estimate SEM models: distributional and structural (Satorra, 1989). Distributional assumptions 

affect the precision of the estimator and hence the significance of test statistics. Maximum 

likelihood (ML) and generalized least squares (GLS) are the most frequently used estimation 

methods for SEM. ML and GLS make the distributional assumption that the measured variables 

have a multivariate normal distribution in the population. The restrictive character of these 

assumptions has motivated the development of new estimation methods that provide appropriate 

estimates of parameters even if the multivariate normal assumption is violated. Examples of 

these methods are asymptotically distribution-free (ADF) estimation, which adjusts its results for 

the degree of kurtosis in the data (e.g., Browne, 1984), and methods that are based on elliptical 

distribution theory, which requires only symmetrical distributions (e.g., Bollen, 1989b; Bentler & 

Dijkstra, 1985). 

Structural assumptions set up a model of interrelationships among observed and/or latent 

variables, and imply a specific structure for the covariance matrix of vector of observed variables 

(Satorra, 1990). All methods of estimation make the structural assumption that the structure 

tested in the sample accurately reflects the structure that exists in the population (Curran, West & 

Finch, 1996). The major purpose of the typical goodness-of-fit indices is to reflect the degree of 

misspecification in the model. Violation of both distributional and structural assumptions is 

common and often unavoidable in practice. Although the impact of violating the distributional 

assumptions on evaluating model fit in SEM has been a focal point of many studies, much less is 

known about violations of the structural assumptions.  

Two basic kinds of SEM models could be distinguished, recursive and nonrecursive. Of the 

two, recursive models are the most straightforward and have two basic features: their 

disturbances are uncorrelated, and all causal effects are unidirectional. Nonrecursive models 
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have feedback loops or may have correlated disturbances. The distinction between recursive and 

nonrecursive models has several implications, some conceptual and others practical. The 

assumptions of recursive models that all causal effects are unidirectional and that the 

disturbances are independent when there are direct effects among the endogenous variables 

greatly simplify the statistical demands for their analysis. On the other hand, nonrecursive 

models require more specialized statistical methods of estimation, and may also require more 

specialized assumptions. Also, the likelihood of a problem in the analysis of a nonrecursive 

model, such as problems of identification, is much greater than for a recursive model (Kline, 

1998). Perhaps due to such difficulties associated with specifying nonrecursive models not 

present with recursive models, few nonrecursive models exist in the social science literature 

(Berry, 1985; Kline, 1998).    

 

2. ASSESSMENT OF MODEL FIT IN SEM 

 
The fundamental hypothesis for structural equation procedures is that the covariance matrix of 

the observed variables is a function of a set of parameters. If the model is correct and if we know 

the parameters, the population covariance matrix would be exactly reproduced (Bollen, 1989a): 

 

                                                                                                                     (1) 

 

where is the population covariance matrix of observed variables,  is a vector that contains the 

model parameters, and is the covariance matrix written as a function of  (Bollen, 1989b). 

In practice, a specified model is fitted to a sample covariance matrix, S. For any selected 

vector of parameter estimates,̂ , a reproduced or implied population covariance matrix, ̂ could 

be obtained: 

 

)ˆ(ˆ                                                                                                                        (2) 

 

The objective in parameter estimation is to find  so that the resulting covariance structure 

implied by the specified model, is as similar as possible to S. The difference between and S 

is measured by an estimated discrepancy function, F̂  which takes a value of zero only when S = 

 and otherwise is positive, increasing as the difference between S and  increases 

(MacCallum, Browne & Sugawara, 1996). Estimation of the parameters of the model involves 

minimizing this discrepancy function, thus the magnitude of F̂ reflects the degree of lack of fit 

of the specified model to the sample data. The most common discrepancy function is the 

maximum likelihood (ML). Other common discrepancy functions include generalized least 

squares (GLS) and asymptotic distribution free (ADF). The test statistic T= (n – 1) minF  has an 

asymptotic  distribution if the specified model is correct in the population with d degrees of 

freedom, where d equals the number of distinct parameters to be estimated subtracted from the 
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total number of observation. Therefore, the test statistic T is often called “the  test.” (Hu & 

Bentler, 1995).  

Because SEM is used to test the fit between a theoretical model and empirical data, there 

must be mechanisms to determine how adequately the model accounts for the data. A wide array 

of fit indices have been proposed for evaluating the fit of SEM models. Fit indices quantify the 

degree of correspondence between a hypothesized model and the data (Hu & Bentler, 1995).  

Initially, only the p value associated with the likelihood ratio statistic was used to 

evaluate fit, under the null hypothesis that the population covariance is identical with those 

predicted from the model estimates (Gerbing & Anderson, 1993). Since a null hypothesis that a 

model fits exactly in some population is known a priori to be false, it seems pointless even to try 

to test whether it is true (Browne & Cudeck, 1993; MacCallum, Browne & Sugawara, 1996). If 

the sample size is sufficiently large in a practical investigation, it can be expected that even 

models that closely approximate the population covariance matrix will be rejected.  

Because of the problems related to test for model fit assessment in SEM such as the 

abovementioned dependency of sample size and lack of information regarding the degree of fit, 

Bentler and Bonett (1980) introduced and popularized several alternative measures of fit, so-

called fit indices. A fit index is an overall summary statistic that evaluates how well a particular 

SEM model explains the sample data. Rather than testing if the model fits the data exactly, fit 

indices test if the model as specified is an approximation to reality. Many investigators (e.g., 

Cudeck & Browne, 1983) argued that it is preferable to depart from the unrealistic assumption 

that the model will fit the data exactly. Instead, Cudeck and Browne, 1983 proposed that any 

given target model “be regarded as one of many formulations for describing behavioral theory, 

some of which are reasonable” (p.50).  

The use of fit indices as alternative measures of model fit became very popular with time, 

however, none of these fit indices have been endorsed as the “best index” by the majority of 

researchers. To decide on the appropriateness of the model, the substantive researcher must sort 

through and understand the meaning of the values for these various indices (Gerbing & 

Anderson, 1993). This led to a real challenge for applied researchers in selecting appropriate fit 

indices among the large number of fit indices available in many popular SEM programs (Hu, & 

Bentler, 1998).  

Moreover, as the number of fit indices increased, it became apparent that it is essential to 

develop classification systems that can aid researchers in choosing appropriate fit indices for 

their studies. The different indices have been classified in a number of ways. One of the most 

widely cited and followed classification schemes for fit indices is the absolute versus incremental 

distinction of fit indices (Bollen, 1989b; Gerbing & Anderson, 1993; Marsh, Balla, and 

McDonald, 1988; Tanaka, 1993). This framework presents “stand-alone” or “absolute” indices 

followed by two different subtypes of “incremental” indices called Type-1 and Type-2 indices. 

Hu and Bentler (1995) further added a third group of incremental fit indices; called types-3 fit 

indices. One also could add to that framework yet another dimension for classifying fit, which 

would be labeled “adjusted” indices (Maruyama, 1998). 

2

2

2
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Absolute fit indices compare the observed covariance matrix to that estimated using the 

conventional discrepancy function (Maruyama, 1998). An absolute fit index directly assesses 

how well an a priori model reproduces the sample data. Although no reference model is 

employed to assess the amount of increment in model fit, an implicit or explicit comparison may 

be made to a saturated model that exactly reproduces the observed covariance matrix (Hu & 

Bentler, 1995). Some of the more commonly used absolute fit indices include goodness-of-fit 

index (GFI), adjusted goodness-of-fit index (AGFI) and standardized root mean squared 

residuals (SRMR) (Jöreskog & Sörbom, 1989). 

Incremental fit index measures the proportionate improvement in fit by comparing a target 

model with a more restricted, nested baseline model (Hu & Bentler, 1995). It addresses the 

question: how well does a particular model do in explaining a set of observed data compared 

with other possible model/models? (Maruyama, 1998). The typical baseline model is an 

independence model, in which all the observed variables are assumed to have variances but are 

uncorrelated with each other (Kline, 1998). 

A Type-1 index directly compares a given model to the fit of a more restricted baseline 

model. As defined by (Hu & Bentler, 1995), Type-1 index uses information only from the 

optimized statistics T, used in fitting baseline ( ) and target ( ) models. A general form of 

such indices can be written as Type-1 incremental index = . Some widely used 

examples of Type-1 fit indices are Bentler-Bonett normed fit index (NFI) (Bentler & Bonett, 

1980), and relative fit index (RFI) (Bollen, 1986).  

Type-2 indices compare models but also include information from the expected value of the 

T statistics for the true model specification under a central chi-square distribution (Maruyama, 

1998). It assumes that the test statistics T for the target model follows an asymptotic chi-square 

distribution with a mean equal to the degree of freedom for a target model. A general form of 

such indices can be written as a Type-2 incremental fit index = , where is 

the degrees of freedom for the target model (Hu & Bentler, 1995), which is the expected value of 

the statistic T for the true target model that is correctly specified so that there is no 

misspecification. There are several different Type-2 indices that are widely used. Some widely 

used Type-2 indices are Tucker-Lewis index (TLI) (Tucker & Lewis, 1973), Bentler-Bonett non-

normed fit index (NNFI) (Bentler & Bonett, 1980), incremental fit index (IFI) (Bollen, 1989a). 

A Type-3 index uses Type-1 information but additionally uses information from expected 

values of ,  or both, under the relevant noncentral chi-square distribution. It assumes that 

with true models or at least not extremely misspecified target models, the test statistic T can be 

approximated in large samples by the noncentral chi-square distribution. This type of fit index 

has not been as widely used in the SEM literature, as Type-1 and Type-2 indices (Maruyama, 

1998). Examples of Type-3 indices include the relative noncentrality index (RNI) (McDonald, 

1989; McDonald & Mrash, 1990), and comparative fit index (CFI) (Bentler, 1990; Hu & Bentler, 

1995). Type-3 indices are assumed to be sample size independent.  

Adjusted indices explicitly address the question: how does the model combine fit and 

parsimony? (Maruyama, 1998). Many models could fit the data if enough parameters were 

BT TT

BTB TTT /

)/( TBTB dfTTT  Tdf

BT TT
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estimated, so these indices penalize for lack of parsimony. For models that use a lot of degrees of 

freedom in model specification, the adjusted or parsimonious fit indices look worse than do the 

relative fit indices (Maruyama, 1998). Examples of this type of fit indices are parsimony 

goodness of fit index (PGFI) (James, Mulaik & Brett, 1982), and parsimony normed fit index 

(PNFI) (Mulaik, James, Van Alstine, Bonnett, Lind & Stillwell, 1989).  

In addition to these types of fit indices, there are fit indices for comparing non-nested 

models. Researchers who have alternative models that cannot be nested are faced with a different 

challenge, since it is difficult to compare models that make different assumptions about patterns 

and relationships (Maruyama, 1998). Examples of this type of fit indices include Akaike 

information criteria (AIC) (Akaike, 1987), modified Akaike information criteria (CAIC), root 

mean square error of approximation (RMSEA) (Steiger & Lind, 1980; Steiger, 1990), and 

expected cross validation index (ECVI) (Browne & Cudeck, 1993).    

Because fit indices were developed with different rationales and with different motivations 

(Gerbing & Anderson, 1993), they may differ on one or several dimensions. Tanaka (1993) 

proposed a six-dimension typology for SEM fit indices and attempted to categorize some popular 

fit indices along these six dimensions. This typology represents the multifaceted nature of fit 

indices which not only makes the comparison among fit indices difficult but also makes it very 

difficult to select the “best” index from all those available based on the theoretical rationales on 

which they are developed (Fan & Wang, 1998).  

The dimensions were provided by Tanaka (1993) were “population- vs. sample-based”, 

“simplicity vs. complexity”, “normed vs. non-normed”, “absolute vs. relative”, “estimation 

method free vs. estimation method specific”, and “sample size independent vs. sample size 

dependent” (p. 16).  

Some attempts are made to define the criteria of the best fit index. For many researchers, the 

ideal fit index would (a) be relatively independent of sample size; (b) provide an accurate and 

consistent measure of difference in goodness of fit for competing models of the same data and 

for the same model applied to different data; (c) vary along an externally meaningful, well 

defined, absolute continuum such that its value can be easily interpreted; and (d) be replicable, 

that is, provide an indication of which model can be most successfully cross-validated when 

tested with new data (Marsh, Balla & McDonald, 1988). No one index has been shown to satisfy 

all of these conditions. Furthermore, not all researchers would even agree with all of these 

criteria. For example, Cudeck and Henly (1991) argue that sample size should affect fit. 

Studying the behavior of fit indices under model misspecification is of particular interest 

given the high likelihood that the model estimated in the sample does not precisely conform to 

the model that exists in the population. Ideally, the extent to which a model is correctly specified 

or misspecified should be the primary determinant for model fit assessment. Therefore, the 

degree of model misspecification should be the major contributor to the variation of the value of 

the fit index. The performance of fit indices under misspecification is a fundamental criterion for 

identifying a good fit index. In reality, there exist a few confounding factors that affect the 
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performance of SEM fit indices such as data normality, the estimation methods used in SEM 

analysis, and the sample size (Fan & Wang, 1998).  

Few studies have investigated the sensitivity of SEM fit indices to model misspecification. 

Previous recommendations on the adequacy of fit indices have been primarily based on the 

evaluation of the effect of sample size or the effect of estimation method, without taking into 

account the sensitivity of an index to model misspecification (Hu & Bentler, 1998). The 

technique used exclusively in the early studies of the evaluation of SEM indices has focused on 

correctly specified models only (Anderson & Gerbing, 1984; Bearden, Sharma & Teel, 1982; 

Boomsma, 1982, 1985). These analyses demonstrate how well the indices indicate correct 

specification, but they do not show the ability of fit indices to discriminate good fitting from 

badly fitting models. Yet, at least as important as correctly indicating true fit is the ability of the 

index to distinguish between the lack of fit due to sampling variability and that due to 

misspecification (Gerbing & Anderson, 1993). Furthermore, under the true model, many sample 

fit indices have a ceiling of about 1.00, and therefore, studying true models with these statistics 

may have artificially created ceiling effects that mask performance differences among different 

fit indices (Fan & Wang, 1998). Few studies have included misspecified models as well as 

properly specified models (Fan, Wang & Thompson, 1999; Fan & Wang, 1998; Hu & Bentler, 

1998; Hu & Bentler, 1999; Marsh, Balla & Hau, 1996; La Du & Tanaka, 1989).  

Most previous studies that investigated model misspecification have addressed the effect of 

model misspecification on the computation of parameter estimates and standard errors (e.g. 

Curran, West & Finch, 1996; Kaplan, 1988,1989) or post hoc model modification (MacCallum, 

1986). However, little is known about the behavior of SEM fit indices under violation of 

different types of misspecifications. Moreover, previous Monte Carlo investigations of the 

behavior of various fit indices considered the confirmatory factor analysis model as the test 

model. The problem with this tendency is that the confirmatory factor analysis model is not a 

typical of the models currently being estimated (Hayduk, 1996). Although common in practice, 

general structural equation models are rare in Monte Carlo simulations (Paxton, Curran, Bollen, 

Kirby & Chen, 2001).  

In this study, the effect on fit indices is examined of two types of model misspecification; 

namely nonrecursive and recursive misspecification. Useful information, such as to which type 

of model misspecification, fit indices were more sensitive, could be obtained. As far as I can tell, 

essentially no previous study comparing the sensitivity of fit indices to these types of model 

misspecification. 

The purpose of the present study is to investigate empirically the effects of model 

misspecification, misspecification type and sample size on several alternative but commonly 

used SEM fit indices derived from ML estimation method. Moreover the effect of the interaction 

among degree of model misspecification, sample size, and misspecification type is also 

evaluated. Accordingly, fit indices that performed best are identified and recommended for use 

in practice. The performance of fit indices was examined over four levels of model 

misspecification ranging from no error to high misspecification, four levels of sample size 
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ranging from 100 to 1000, and two types of misspecified models. The first type of model 

misspecification involves specification of the target model as recursive, whereas the correct 

model specification is nonrecursive. Specification of the target model as nonrecursive as the 

correct model specification, identified the second type of model misspecification considered in 

the study. 

The study is conducted within the context of general structural equation modeling 

representation rather than the confirmatory factor analysis model, and investigates the sensitivity 

of SEM fit indices to misspecification in the structural sub-model. The models are studied under 

a variety of systematic degrees of misspecification. Three levels of misspecification, in addition 

to the correct specification are used in this study. Findings from the present study are intended to 

provide the researcher further insight into the behavior of fit indices to detect model 

misspecification under different types of misspecification, and the role sample size plays with 

degree of misspecification, type of misspecification, or both in affecting the value of fit indices. 

Moreover, evidence regarding the efficacy of cutoff values of fit indices is provided (Hu & 

Bentler, 1998; 1999).   

To increase the external validity, the study investigates models for analysis that are based on 

published substantive research. As suggested by Gerbing & Anderson, 1993 “defining the 

models studied by Monte Carlo methods according to the characteristics of published models 

would result in greater generality of results for substantive researchers, as well as contribute to 

the comparability of knowledge accumulated across multiple studies” (p.62). 

The present study is aimed to address the following questions: which SEM fit index (-es) is 

more sensitive to structural sub-model misspecification? Is the value of fit indices affected by the 

type of the model misspecification (recursive/nonrecursive)? Which SEM fit index (-es) is more 

precise with low sampling fluctuations? How does the interaction between degree of model 

misspecification and type of model misspecification affect the value of fit indices? Is the effect 

of degree of model misspecification and misspecification type on the value of fit indices is 

conditional upon the sample size? 

The study investigates the behavior of ten commonly used fit indices; namely Goodness-of-

Fit Index (GFI;  Jöreskog & Sörbom, 1981), Standardized Root Mean-square Residuals (SRMR; 

Jöreskog & Sörbom, 1981), McDonald’s Centrality Index (MCI; McDonald, 1989), Root Mean 

Square Error of Approximation (RMSEA; Steiger, 1990), Normed Fit Index (NFI; Bentler &  

Bonett, 1980), Relative Fit Index (RFI; Bollen, 1986), Incremental Fit Index (IFI; Bollen, 

1989a), Non-Normed Fit Index (NNFI; Bentler & Bonnet, 1980), Relative Noncentrality Index 

(RNI; McDonald and Marsh,1990) and Comparative Fit Index (CFI; Bentler, 1990). Table 1 

shows the defining equations and abbreviations for all fit indices considered in the study. 
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3. METHOD 

 

3.1 Population Model Used in the Study 

 

A key step in designing a Monte Carlo experiment is to create a model that is representative from 

an applied point of view, manageable, and answering relevant, specific research questions 

(Paxton et al., 2001). A modified version of a well known SEM model of peer influence 

proposed by Duncan, Haller and Portes (1971) is chosen as our population model from which the 

simulated data is generated. To increase the external validity of Monte Carlo research results, 

Gerbing and Anderson (1993) and Paxton et al. (2001) recommend the use of simulating models 

that resemble those in published research. The original model of Duncan et al. (1971) is a general 

structural equation model that contains two latent variables and ten observed variables. The 

model is nonrecursive due to the reciprocal paths between the two latent variables.   

To accommodate the different levels of misspecification and answering the specific research 

questions, the model is modified to include a third, dependent construct with two more observed 

variables (indicators) by which the added latent variable is measured. Three paths from the 

exogenous observed variables to the added latent variable are included in the model. The 

modified model then contains 12 measured variables and three latent factors with two indicators 

per factor. The causality among variables make the model a general structural equation model 

rather than confirmatory factor analysis model. Causality among variables is common in 

published research but rare in SEM Monte Carlo simulations (Paxton et al., 2001). Both the 

original and the modified models have been researched in many studies (e.g., Jöreskog, 1979; 

Jöreskog & Sörbom, 1989; Farley & Reddy, 1987). Based on the above theoretical model, the 

fully specified population model used in the present study is displayed as Figure 1. The observed 

variables are indicated by Vs, latent variables are indicated by Fs, measurement errors of the 

observed variables are indicated by Es, and disturbances of the latent variables are indicated by 

Ds. 

Parameter values are carefully selected using Wright’s rules of paths tracing and 

decomposing relationships between variables into causal and noncausal components (Maruyama, 

1998),and following recommendations of Paxton et al. (2001). In addition, parameter values 

were selected to ensure proper parameter estimation, to manage the misspecification in such a 

way that the omission of one or more parameters would result in the desired degree of 

misspecification. Precautions were taken to make sure that all specifications of the model were 

identified using the rules of identification (Kline, 1998). The true population variance/covariance 

matrix for the target population model is obtained using the procedure described by Jöreskog & 

Sörbom (1989, P. 211-213) with LISERAL 8.53.  

 

3.2  Misspecified Models 

 

Although misspecification can occur when one or more parameters are estimated whose 

population values are zeros (misspecification of inclusion), as well as when one or more 

parameters are fixed to zero whose population values are nonzeros (misspecification of 

exclusion), or in both situations; the present study only examines the sensitivity of fit indices to 
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misspecification of exclusion only. Therefore model misspecification is achieved in this study by 

fixing certain structural paths to zero in the model that should have been freed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The decision to limit the study to only this kind of misspecification error was based on the 

difficulty of isolating the effects of different types of misspecification on the fit index value. 

Moreover, this type of error is chosen because it is thought to be a frequent type of specification 

error in practice. In application of SEM, researchers often attempt to force simple structure on 

their models because of the obvious interpretation simplicity (Hutchinson, 1998). Studies by 

Farley and Reddy (1987), Kaplan (1988), and La Du and Tanaka (1989) have shown that errors 

of omission are much more serious than errors of inclusion. Hu & Bentler (1999) noted that 

misspecification models due to inclusion of parameters whose population values are zeros have 

zero population noncentrality and therefore do not have significantly different estimates for 

model fit indices. In the context of multiple regression, Pedhazur (1982) showed that omitting 

relevant variables from the regression model (misspecification of exclusion), biases the 

estimation of the regression coefficients of the variables in the model, however including 

irrelevant variables in the model (misspecification of inclusion) does not affect the estimation of 

the regression coefficients. 
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In the present study, degree of misspecification refers to the number and size of paths that 

have been omitted from the correctly specified models. Systematic variation of the degree of 

model misspecification is achieved by varying the degree to which the fitted model resembles the 

true model. Four specifications ranging from a correct model to a highly misspecified model are 

utilized. The misspecification of the model consists of a nonrecursive or recursive 

misspecification. This last type of misspecification is thought to be a frequent specification error 

in the social sciences, given the difficulties associated with specifying nonrecursive models 

(Kline, 1998). Our study design includes these two types of model misspecification. For each of 

these two types, three misspecification levels are imposed on the correct model: slight 

misspecification, moderate misspecification, and high misspecification. The three levels of 

misspecification differ in terms of number and size of omitted paths, and in terms of power to 

detect misspecification.The true model specification was labeled as M0, whereas, the 

misspecified model specifications were named M1, M2, and M3, which represent the slightly 

misspecified model, the moderately misspecified model, and the highly misspecified model, 

respectively.   

For both types of model misspecification, M0 is the properly specified model, that is, the 

estimated model matches the population model. For nonrecursive misspecification, M1N omits 

the paths from V7 and V9 to F1 and V9 to F3; M2N additionally omits V8 and V10 to F2; and 

finally, M3N additionally removes V12 to F3. For recursive misspecification, M1R omits the 

paths from F2 to F3 and from V7 and V9 to F1; M2R additionally omits V8 to F1 and V10 to F3; 

and finally, M3R additionally removes V9 to F2. Paths were selected for omission such that the 

misspecified models could be legitimate specifications of the model and are common in practice. 

For example, recursively misspecified models were specified to represent a chain of causality 

among the latent variables. Paxton et al. (2001) noticed "chains of causality among latent 

variables are common in published research but rare in structural equation model Monte Carlo 

simulations" (P.292). 

To keep the size of specification error equivalent for the two types of misspecification over 

the degree of misspecification (M1, M2, M3), and to avoid confounding misspecification type 

with degree of misspecification, omitted paths are matched in terms of both the size of 

unstandardized and standardized population path coefficients for the two types of 

misspecification. That is, under the same level of misspecification, the omitted paths in the two 

types of misspecified models were selected so as to have the same population path coefficient 

size. In addition, power to detect misspecifications was approximately equivalent for the two 

types of misspecification over degrees of misspecifications across all sample sizes studied. 

Power is calculated in our study for each misspecified model under the various sample size 

conditions using the procedure outlined by Saris & Satorra (1993). 

 

3.3 Study Design 

 

A three-factor balanced experimental design was used in our study. Four levels of sample sizes 

(100, 200, 500, and 1000), four levels of model misspecification (correctly specified, slightly 
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misspecified, moderately misspecified, and highly misspecified), and two types of model 

misspecification (recursive and nonrecursive misspecification) were incorporated in a 4 x 4 x 2 

factorial design with repeated measures over degree and type of misspecification. Such a design 

allows a systematic assessment of the impact of the three factors and the interaction among them 

on fit indices. Data were analyzed using the GLM repeated measures procedure in SPSS 17 

(SPSS, 2008).   

Sample sizes chosen for our study ranged from small (100) to large (1000) relative to the size 

of the model. Gerbing and Anderson (1993) suggested that at least 100 or more replications per 

cell in the design are needed to provide an accurate estimate of the population values. In the 

present study 500 replications (samples) in each cell condition were drawn from the known 

population model. This number of replications would thus be considered large enough to 

accurately calculate statistics. The aim of producing such a large number of replications is to 

improve the precision of the study (Skrondal, 2000).  

 

3.4 Data Generation 

 

Simulated raw data were generated in EQS 6.1 (Bentler, 2008) as random draws from the 

population covariance matrix. EQS has a built-in simulation procedure for generating normally 

distributed samples based on a population matrix. Five hundred raw data sets for each sample 

size were created. For each sample generated under specific sample size, one of the model 

misspecifications (M0, M1N, M2N, M3N, M1R, M2R, or M3R) is estimated for that sample. 

That is, the data for a given sample size is generated based on the true population covariance 

matrix, followed by the testing of the goodness-of-fit between a target model and the generated 

data. During the course of fitting the models to the data, some data sets may present convergence 

difficulties, that is not converge, or converge to improper solutions. Improper solutions refer to 

estimates that take on values that would be impossible for the corresponding parameters, such as 

outside the constraints. These primarily take the form of a correlation greater than one or 

constrained at one or a variance that is negative or constrained to zero (Chen, Bollen, Paxton, 

Curran, & Kirby, 2001). 

In the present study, a sample was regarded as invalid if after 100 iterations; the estimation 

did not converge, or converged to improper solution. To achieve convergence as quickly as 

possible for each replication, population parameters were used as starting values. Starting values 

were needed because EQS estimates the model and produces fit statistics as part of its data 

generation. All invalid samples were discarded in the course of the final Monte Carlo analysis. 

Because it is good to use the same number of replications for all treatments, our goal was to 

generate 500 good replications at each sample size for all model specifications. The obvious 

advantage of using the same number of replications for all treatments is to have a balanced 

design. Under such a balanced design, the effects of violating the assumptions of ANOVA such 

as distributional assumptions, are minimized. To obtain 500 good replications, 750 raw data sets 

were initially generated for sample sizes of 200 through 2000, and 900 raw data sets were 

generated for sample size 100 where invalid samples are more likely. The first 500 replications 

that converged and provided proper solutions at each sample size over the misspecification levels 

and types were kept. This strategy resulted in 500 good samples for all five sample size levels.   
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4. RESULTS 
 

4.1 Preliminary Analyses 
 

A preliminary examination of the behavior of each fit index was based on the mean distances 

between the observed fit index values for each of the model specifications (Hu & Bentler, 1998) 

and the corresponding population fit index values, as well as the correlations among the fit 

indices. Population values of goodness-of-fit indices obtained from each specification of the 

model were calculated by fitting each model to the population covariance matrix with n = 

100,000.  

The overall mean distances were calculated for each fit index. The purpose for calculating 

these distances was to determine how much each index might depart from its value under the 

correct and incorrect specifications of the model. The Overall mean distance (OMD) is 

calculated using the following formula (Hu & Bentler, 1998): 

NPOOMD /)( 2                                                                                              (3) 

where O is the observed fit index value, P is the population fit index value, and N is the total 

number of observed fit indices.  

Analysis of these distances showed that for the correctly specified and slightly misspecified 

models, the values of CFI, IFI, RNI, MCI, RMSEA and SRMR were closer to their 

corresponding population values than the other fit indices. For higher misspecification levels, 

values of SRMR, RMSEA, CFI, RNI and IFI were closer to their corresponding population 

values than the other fit indices.   

Information regarding means, variability and correlations with sample size for each of the 10 

fit indices is presented in Table 2. Inspection of these results shows that values of GFI, RMR, 

SRMR, NFI and RFI are considerably related to sample size under all misspecification levels for 

both types of misspecification. However, the effect of sample size on these five fit indices 

becomes somewhat less serious as the degree of misspecification increases. MCI, NNFI and RNI 

are relatively independent of sample size at all misspecification levels for both types of 

misspecification. Correlations between RMSEA, IFI and CFI and sample size suggest that the 

effect of sample size on these fit indices depends on the degree of misspecification. For the true-

population specification of the model, RMSEA and CFI shows moderate correlation with sample 

size. For the slightly misspecified models, correlation between RMSEA and CFI and sample size 

are lower but still relatively high, especially for the recursive misspecification type. The 

correlation with sample size for RMSEA and CFI decreases with increasing degree of 

misspecification. Whereas sample size affected RMSEA and CFI at the true model specification, 

it affected IFI only at the high recursive misspecification.  

Examining the mean and variability of the sampling distribution for different fit indices 

revealed that values of all fit indices were responsive to the change in the degree of model 

misspecification. For the true-population specification of the model, RNI, IFI, NNFI, and MCI 

had mean values of at least .999 which indicates nearly perfect fit. CFI and RMSEA have mean 

values of .997 and .011 respectively. Whereas the standard deviation of CFI, RNI and IFI were 

as low as .01, NNFI, RMSEA and MCI had relatively higher standard deviations (approximately 

.02) at the true-population model specification.  

A statistic is an unbiased estimate of a parameter if the expected value of the sampling 

distribution of the statistics is equal to the parameter of which it is an estimate (Winer, Brown & 

Michels, 1991). Generally, given the population values of the fit indices, the mean of the 

sampling distributions for IFI, NNFI, RNI and CFI were the least biased among the studied fit 
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indices under the examined types and model misspecifications. The mean of the sampling 

distributions for NFI, RFI, and GFI were the most biased. 

For both types of misspecification, values of NNFI, RFI, MCI, and RMSEA degraded 

substantially in terms of fit with increasing degree of misspecification. Mean value of NNFI 

dropped considerably from a value as high as 1.00 at the true specification of the model to as low 

as 0.766 and 0.802 for the high misspecification for the nonrecursive and recursive mis-

specification, respectively. The mean value of MCI dropped noticeably from 1.00 for the true 

specification to .780 and .811 for the high misspecification for the nonrecursive and recursive 

misspecification, respectively. Although values of RFI degraded considerably as the degree of 

model misspecification increased, they showed relatively high standard deviations for all model 

misspecifications. Moreover, the sampling distribution mean value for RFI at the true-population 

model specification was biased downward with mean values of .941, .954 respectively. The 

mean of the sampling distribution for RMSEA increased from .01 under the true-population 

model specification to .116 and .106 for the high misspecification for the nonrecursive and 

recursive misspecification, respectively, with relatively low standard deviations.  

In terms of type of misspecification, all fit indices showed better fit for the recursive than the 

nonrecursive misspecification type. However, the difference between the mean values of the fit 

indices for recursive and recursive misspecification varied according to the level of 

misspecification. For the slightly misspecified models, the difference was small for most fit 

indices. As misspecification increased, the difference in the mean of the sampling distributions 

of fit indices at both recursive and nonrecursive misspecification increased. 
 

4.2 Sources Of Variation In The Fit Indices 
 

A series of 4 (sample size) x 4 (misspecification levels) x 2 (misspecification types) ANOVA 

experiments were performed on each fit index to examine the potential effects of degree of 

model misspecification, misspecification type, and sample size on fit indices. Due to the large 

number of observations, standard probability values were not particularly useful cutoffs for 

distinguishing between meaningful and inconsequential effects. Therefore, a measure of effect 

size, 2 , was reported and interpreted in this study (Tabachnick & Fidell, 2001). Anderson and 

Gerbing (1984) have suggested that an omega-squared of less than 0.03 is negligible even when 

F test is significant. For the purpose of this analysis and because omega-squared is always 

smaller than eta-squared (Tabachnick & Fidell, 2001), only an effect with 2  of 0.05 or larger 

was used to identify important effects. Table 3 shows partial 2  for the different sources of 

variation for each fit index. As these results show, the three-way interactions for all fit indices 

had partial 2  less than .05. The small amount of variation accounted for by the three-way 

interactions implies that the results can be safely interpreted by considering the three two-way 

interactions.  
 

Interaction effects of level and type of misspecification: An inspection of Table 3 indicates 

that the effect size for level of model misspecification by type of misspecification was significant 

for all ten fit indices. High values of 2  for this interaction suggest that the effect of type of 

misspecification on the fit index value depends on levels of model misspecification. Therefore, 

interpretation of type of misspecification without considering degree of misspecification is 

problematic. Since both the main effects of degree of misspecification and type of 
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misspecification yielded large effect sizes ( 2 ), investigating these interactions might be better 

approached using interaction contrasts (Tabachnick & Fidell, 2001). 

Interaction contrasts for each fit index were constructed by comparing each level of 

misspecification except the true specification, to the previous levels of misspecification for both 

recursive and nonrecursive type of misspecification. The purpose of these interaction contrasts is 

to determine at which level of misspecification the difference in the mean value of the fit index 

between the two types of misspecification account for a significant amounts of interaction 

variance. In addition, these contrasts are orthogonal, which facilitates the interpretation of the 

outcomes. Analysis of these results revealed that a substantive amount of interaction between 

degree of model misspecification and misspecification type variance were attributable to the 

moderate and high degrees of model misspecification for all fit indices except RMSEA. In other 

words, the difference between the mean value of the fit index for recursive and nonrecursive 

misspecifications was stronger at the high and extensive degrees of misspecification. This may 

suggest that with the exception of RMSEA, fit indices were relatively less sensitive to recursive/ 

nonrecursive type of misspecification at low degree of misspecification and became more 

sensitive to type of misspecification as the specification error in the model increase. RMSEA 

was the only fit index that demonstrated sensitivity to type of misspecification at a low degree of 

misspecification. In general, we found that all fit indices yielded less error for the recursive 

misspecification above the equivalent nonrecursive misspecification. The difference in fit 

between the two types of misspecification increased as degree of misspecification increased.  
 

Interaction effects of level of misspecification and sample size: Two fit indices showed 

significant interaction between level of model misspecification and sample size: SRMR and 

RMSEA. This might indicate that the main effects of these two factors did not adequately predict 

the variability among the cell means for SRMR and RMSEA. To investigate at which levels of 

misspecification most of the interaction variance could be accounted for, follow-up contrasts 

were used. Our results indicated that for SRMR, the sample size has a minimal effect when no or 

low degree of misspecification was present. However as misspecification in the model increased, 

sample size started to have a significant effect on the value of SRMR. On the other hand for 

RMSEA, sample size affected the value of RMSEA only at no or low specification error. 

Although, RMSEA has no significant main effect of sample size (see Table 3) − which is not the 

case for SRMR, sample size affects RMSEA at certain levels of misspecification. In other words, 

the effect of sample size on values of RMSEA appeared to be conditional upon level of model 

misspecification. RMSEA is associated with sample size when there is no or low specification 

error. Nevertheless, the effect of sample size diminished as the degree of model misspecification 

increased.  
 

Interaction effects of type of misspecification and sample size: The interaction effect of type 

of misspecification and sample size for SRMR could be considered statistically reliable ( 2 = 

.065, Table 3). This significant interaction indicated that the main effects of both the type of 

misspecification and sample size could did not adequately predict the variability among the 

SRMR cell means. Inspection of the mean values of SRMR showed that as sample size grows 

bigger, the difference between the mean value of SRMR at recursive and nonrecursive 

misspecifications increased. The interaction effect of type of misspecification and sample size 

for SRMR was further investigated using the interaction contrasts comparing the recursive versus 

the nonrecursive misspecification types at the mean of the lowest two sample sizes (n=100 and 
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200) versus the highest two sample sizes (n=500 and  1000). Result of the interaction contrast 

analyses indicated that the difference between the mean values of SRMR for recursive and 

nonrecursive misspecification types under relatively small sample sizes (≤ 200) is significantly 

lower than the corresponding difference at larger sample sizes (> 200). 
 

Main effects: The main effect of level of model misspecification accounted for a substantive 

amount of fit indices variation. Over the sizeable range of degrees of misspecification, all fit 

indices showed reasonable sensitivity to model misspecification. Mean values of fit indices 

decreased as level of specification error increased. The main effect of type of model 

misspecification also accounted for a large amount of variance for all fit indices. However, all fit 

indices yielded less error for recursive than nonrecursive misspecifications under the same 

conditions of level of misspecification and sample size. However, mean values of RMSEA, MCI, 

and CFI showed the lowest discrimination between recursive and nonrecursive misspecification 

types under the same conditions of level of model misspecification and sample size. The main 

effect of sample size was associated with substantive 2 for GFI, SRMR, NFI and RFI.   
 

4.3 Reliability Of Estimation And Sampling Fluctuations 
 

An important characteristic of incremental fit indices is the precision of estimation and the 

relative lack of sampling fluctuations. The approach normally used in Monte Carlo studies to 

represent this feature is to compare the within-cell variation. However, Marsh et al. (1996) 

showed that this approach for estimating and comparing relative precision in different fit indices 

is not appropriate because the different fit indices may vary along different metrics; hence, their 

within-cell variances are not comparable. Therefore, they suggested a more appropriate approach 

to evaluate sampling fluctuations by comparing standardized variance components instead of 

those associated with raw scores. One way to standardize variance components is to compute the 

variance explained relative to total variance. However, they noted that the standardized residual 

variance may not be appropriate because some of the variance explained is due to undesirable 

sample size effects in some indices. Therefore, they recommended using the variance associated 

with degree of model misspecification as the operationalization of the true score variance and 

hence this variance may be a better basis for comparison (Marsh et al., 1996). We used this 

approach in the present study for comparing the reliability of estimation for fit indices. 

Table 4 shows the raw and standardized variance components due to degree of misspecifica-

tion, sample size and residuals. In addition, the ratio of the degree of misspecification variance 

(the operationalization of the true score variance) relative to the sum of variance due to sample 

size (undesirable systematic bias) and the residual variance was computed and presented in Table 

4. The higher this ratio, the better the fit index can be viewed with regard to reliability of 

estimation and relative absence sampling fluctuations.  

Inspection of the total sum of squares for the different fit indices in Table 4 reveales that fit 

indices vary substantially in total variability. MCI, RFI, and NNFI have larger variability than 

the other fit indices, suggesting that the different fit indices varied along a substantially different 

metrics. Therefore, comparing the raw-scores variance components for evaluating reliability of 

estimation is not appropriate. Standardized variance components were computed by dividing the 

raw-score variance components by total score variability. A comparison of standardized residual 

variance components ( RESS / TSS  in Table 4) reveals that it varies from .074 for SRMR to .138 for 

NNFI. However, as shown in Table 4, fit indices that demonstrate smaller residual variance show 



 

623 
 

higher standardized sample size variance, suggesting that part of the smaller residual variance of 

these fit indices might be due to the systematic sample size effect. Furthermore, Table 4 shows 

that the proportion of variance accounted for by degree of model misspecification relative to total 

fit index variability ( DMSS / TSS ) varies substantially from .584 for SRMR to .865 for IFI. Based 

on this approach for comparing reliability of estimation of fit indices, IFI, CFI, MCI were the 

best among all fit indices ( DMSS / TSS was at least .861), followed by RNI, RMSEA and NNFI 

(SSDM / SST  was at least .846). The performance of SRMR, NFI, GFI, and RFI were the poorest 

among the ten fit indices studied. 

These results were further confirmed using the ratio of the degree of misspecification 

variance relative to the sum of variance due to sample size and the residual variance (SSDM / [SSSS 

+ SSRE]). The differences among fit indices using this ratio were substantially larger than 

observed with the proportion of variance accounted for by degree of model misspecification 

relative to total index variability. This index ranged from 1.83 for RFI to 7.29 for IFI. As shown 

in Table 4, the six fit indices with the highest ratio among all fit indices. IFI (7.29) and CFI 

(7.26) were almost equivalent and slightly better than MCI (6.86) RNI (6.85), RMSEA (6.74) 

and NNFI (6.15), whereas the performances of SRMR (2.79), NFI (2.35), and particularly GFI 

(1.92), and RFI (1.83) were the poorest with ratios considerably lower than the best six fit 

indices. 
 

5.  DISCUSSION 
 

This study sought to evaluate and compare the performance of various SEM goodness-of-fit 

indices under conditions of degree of model misspecification, type of model misspecification and 

various sample sizes. Based on a known population model used to generate simulated data, 

models are hypothesized to be true, trivially, moderately, and highly misspecified. Two types of 

model misspecification are considered: recursively and nonrecursively misspecified models. 

Results of this study showed that the sensitivity of fit indices to model misspecification was 

higher for nonrecursive than for recursive misspecification type. That is, when the true-

population model is nonrecursive and the model is misspecified as recursive, fit indices were less 

sensitive to misspecification than if the model is misspecified but still nonrecursive under the 

same size of sample and misspecification conditions. Among all fit indices studied, SRMR 

showed the highest sensitivity to type of misspecification, whereas RMSEA was the least 

sensitive fit index to type of misspecification. Nevertheless for all fit indices, the effect of type of 

misspecification increased with increasing degree of misspecification. 

With regard to sensitivity to model misspecification, all fit indices studied here were found to 

be sensitive to model misspecification. Previous studies that investigated the effect of model 

misspecification on the value of fit indices found that model misspecification contributed the 

most to the variation of all fit indices (e.g., Fan & Wang, 1998; Fan et al., 1999). However these 

studies found that the amount of variation accounted for by model specification, unlike the 

present study, varied substantially among fit indices. In addition to the type of models used in 

these past studies and how the model was misspecified, this might be due to the fact that the 

range of misspecified models on the continuum of degree of misspecification is limited 

compared to the present study. For example, Fan and Wang (1998) and Fan et al. (1999) defined 

two misspecified models in which they evaluate the sensitivity to model misspecification. 

Nevertheless, results of the effect of model misspecification in the present study are consistent 
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with results found by Marsh et al. (1996) who used correctly specified as well as several 

substantially misspecified models. Consistent with the present study, they found that degrees of 

model misspecification accounted for a large proportion of variance in all fit indices they 

studied; namely NFI, RFI, NNFI, IFI, RNI, and CFI.  

Whereas fit indices showed high sensitivity to model misspecification, they were varied in 

their reliability of estimation and sampling fluctuations using the model misspecification as the 

operationalization of the true score variance. Except for MCI and RMSEA, all absolute fit 

indices and all Type-1 fit indices studied performed the poorest among all fit indices. All Type-2 

and Type-3 fit indices studied here; namely IFI, NNFI, RNI and CFI, in addition to RMSEA and 

MCI yielded the highest reliability among all fit indices studied. Consistent with the present 

study's results, Marsh et al. (1996) found that IFI, RNI, CFI and NNFI were the best fit indices 

with regard to selectivity to misspecification and relative lack of sampling fluctuations. Fan & 

Wang (1998) and Fan et al. (1999) found that MCI and RMSEA were among the highest 

sensitive fit indices to model misspecification.   

Although not all researchers agree that the influence of sample size is not necessarily 

desirable, most researchers have proposed that a systematic relation between sample size and the 

values of fit is undesirable. Results of the present study showed that the mean of the sampling 

distributions of all absolute fit indices except RMSEA and MCI, and all Type-1 fit indices, were 

systematically related to sample size under both true-population and misspecified models, 

whereas the means of the sampling distributions of IFI, NNFI, RNI. CFI and MCI were relatively 

independent of sample size. GFI, NFI, and RFI were downward biased especially at small 

sample sizes and true-population model specification. When n is small, it is unexpected to have a 

value close to 1.00 for these fit indices, even if a perfect model specification is tested. SRMR 

was positively biased at small n and correct specification. The results reported here regarding 

sample size effect are consistent with previous studies (Anderson & Gerbing, 1984; Bentler, 

1990; Bollen, 1989a; Fan & Wang, 1998; Fan et al., 1999; La Du & Tanaka, 1989; Marsh et al., 

1988; Marsh et al., 1996). Under the true-population model specification, Anderson and Gerbing 

(1984) found that the effect of sample size was substantial for GFI and NFI; and small for NNFI. 

Although they concluded that NNFI had much larger sampling fluctuations than did other fit 

indices, Marsh et al. (1996) noted that this conclusion is based on inappropriate method to assess 

sampling fluctuations, and subsequently suggested and used more appropriate methodology and 

found that sampling fluctuations in NNFI were similar or better to those in the other incremental 

fit indices. The methodology suggested by Marsh et al. (1996) is applied here and similar results 

were found in the present study.  

Marsh et al. (1988) found that sample size has a substantive effect on all absolute and Type-1 

fit indices, a conclusion replicated in the present study. They recommended the use of NNFI 

along with other 4 Type-2 fit indices because of their independence of sample size and 

sensitivity to model misspecification. Bollen (1989a) also noted the undesirable relation to 

sample size of NFI and suggested IFI to correct this problem. He indicated that IFI and NNFI 

were relatively unaffected of sample size, which is consistent with the present study results. 
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Furthermore, Marsh et al. (1996) found that RNI, NNFI, and IFI were relatively unrelated to 

sample size, whereas RFI and NFI were strongly related to sample size. IFI showed small bias at 

the smallest sample size (n=100) and the extensive model misspecification. McDonald & Marsh 

(1990) showed mathematically and that IFI is positively biased at small sample size and 

misspecified models and that the size of bias decreased as the degree of misspecification 

approached zero, a conclusion supported in the present study only with the extensive 

misspecification and sample size of 100.  

Recently, using general structural equation models, Fan and Wang (1998) ,Fan et al. (1999) 

and Hu & Bentler (1998) found that sample size was related to the sampling distribution of GFI, 

RFI and NFI, whereas sample size had a small effect on CFI, NNFI, IFI and RMSEA. These 

results were consistent with the present study except for RMSEA. In the present study, although 

the main effect of sample size on RMSEA was negligible − consistent with previous studies, 

sample size still plays a role in the value of RMSEA. Sample size was found to affect RMSEA at 

no or slight misspecification particularly for recursive misspecification type and small sample 

size (e.g., n ≤ 200). At relatively small n and no or slight specification error, the mean of 

sampling distribution of RMSEA was positively biased. Regardless of degree of model 

misspecification, RMSEA was less or not biased at high sample size; in addition, RMSEA seems 

independent of sample size at moderate or high misspecification levels at all sample sizes. 

Because this conclusion differs from previous research, the generalizability of this conclusion 

needs more evaluation. Moreover, results of the present study found that sample size not only 

affected SRMR, but also sample size interacts with both degree and type of misspecification for 

these two fit indices. As sample size increases the effect of misspecification type increase. In 

addition, the mean of the sampling distribution of SRMR was more positively biased at small 

sample sizes and true-population model specification than at large sample sizes and high degrees 

of misspecification.  

The results of the study are limited by the conditions used in the study. Misspecification is 

achieved in this study by fixing certain structural paths to zero that should have been freed. 

Because misspecification can take a variety of forms, under different kinds of misspecifications, 

the results may not be consistent with the results obtained from this study. In addition, the 

present study will not be able to detect if the fit indices behave differently under different 

estimation methods or when the multivariate normality assumption is violated. It is well known 

that degree of model misspecification is not easily quantified, so it is difficult to make a priori 

prediction about severity of misspecification (Gerbing & Anderson, 1993). In the present study 

degree of model misspecification is empirically determined by varying the degree the fitted 

model resembles the true model. Although the number of removed paths, the true-population 

parameter size and the type of misspecified model are taken into account when manipulating the 

degree of misspecification, in the present study the terms slightly, moderately, highly, and 

extensively misspecified are used only to indicate different degrees of misspecification. The 

selection of misspecified models could still be a limitation to the present study. The study also 
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focused on single-sample situations, results of the present study may not applied in situations of 

multi-sample structural equation models. 
 

6.  RECOMMENDATIONS FOR USE OF FIT INDICES IN PRACTICE 
 

GFI: GFI was sensitive to model misspecification, but also highly sensitive to sample size, 

biased downward at correct specification as well as at all misspecified models especially at small 

n and true specification. GFI was the poorest among fit indices with regard to reliability of 

estimation and sampling fluctuations. Therefore, GFI is not recommended for use in practical 

application of SEM. 
 

SRMR: The present study showed that SRMR were positively biased by n, a conclusion 

consistent with the results of previous studies. In addition, the effect of sample size was more 

serious at small sample sizes and true-population model specification. Although the sensitivity of 

SRMR to model misspecification was comparable to other fit indices, its reliability of estimation 

was not as good as Type-2 and -3 fit indices but not as bad as most absolute and Type-1 fit 

indices. Nevertheless, SRMR can be recommended for use as a measure of local fit. 
 

NFI and RFI: Results of the present study show that NFI is biased by n, a conclusion consistent 

with previous studies. Although Bollen (1986) developed RFI to overcome this problem with 

NFI, previous research as well as the present results show that RFI is also substantially biased by 

sample size. Whereas NFI and RFI are still widely used, they are typically not among the 

recommended fit indices. 
 

IFI: In the present study, IFI was sensitive to model misspecification, but did not systematically 

relate to sample size at any model specification, did not show biasness at any sample size or 

model specification, had a small sampling fluctuations and was among the best indices with 

regard to precision of estimation. Current results show also that IFI was slightly related to n at 

high model specification particularly for the recursive misspecification type and was faintly 

biased by n at the smallest sample size and the high model misspecification. However, Marsh 

(1995) and Marsh et al. (1996) found that the adjustment for degrees of freedom in IFI is 

inappropriate in that it penalizes model parsimony and rewards model complexity and this 

undesirable property of IFI is more noticeable for small n, a conclusion not tested in the present 

study. In the present comparison, although IFI showed small bias at smallest sample size and 

high and extensive misspecification conditions, this bias was very small and could be considered 

no important in practice. Thus, IFI was successful in meeting the criteria considered in the study, 

and is recommended for use particularly under moderate to large sample sizes (n > 200). 
 

NNFI: NNFI showed high sensitivity to model misspecification, high reliability of estimation, 

independence of sample size, and the mean of its sampling distribution was not biased at any 

sample size or model specification/misspecification. Sampling fluctuations in NNFI were 

comparable to other incremental fit indices, a conclusion consistent with Marsh et al. (1996). 

Although, Marsh et al. (1996) specified situations in which the behavior of NNFI is likely to be 
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unstable such as when the baseline model is true, it is less likely to encounter such these 

situations in practice. In addition, Bentler (1990), McDonald and Marsh (1990), Marsh et al. 

(1996) and Mulaik et al. (1989) demonstrated mathematically and empirically that NNFI 

appropriately penalized model complexity and rewarded model parsimony; a property deemed to 

be desirable and useful by many researchers (Bollen, 1989b, 1990; Gerbing & Anderson, 1993). 

For these reasons, NNFI is recommended for use.  
 

RNI and CFI: RNI and CFI are the representatives of Type-3 incremental fit indices in this 

study. They showed high sensitivity to model misspecification and high reliability of estimation. 

Although both fit indices were not systematically related to sample size, RNI showed more 

relative independence on sample size than CFI. Under true-population model specification and 

slightly misspecified models, CFI showed some relation with sample size particularly under 

recursive misspecification (see Table 4). CFI is negatively biased (underestimate the population 

value) by n at small sample sizes, and the size of bias tends to decrease as the degree of 

misspecification increase. This small marginal correlation between CFI and n was not observed 

in RNI. It is recommended to report values of RNI and CFI for overall model data fit. 
 

MCI: In the present study, MCI was the most successful among all absolute fit indices studied 

here. MCI was sensitive to model misspecification, has small sampling fluctuations and high 

reliability of estimation, and not systematically related to sample size, with a mean of approxi-

mately 1.00 for the true model specification at all sample sizes. Because MCI is a transformation 

of the rescaled noncentrality parameter, it is not expected to be systematically related to sample 

size and to be insensitive to model misspecification. Results of the present study regarding MCI 

were consistent with previous evaluation of the fit index (e.g., Hu & Bentler, 1998; Fan et al., 

1999) .MCI is highly recommended to be utilized for SEM practice. 
 

RMSEA: In the present comparison, RMSEA appropriately reflected systematic variation in 

model misspecification, and showed small sample fluctuations. Although the main effect of 

sample size on RMSEA was very small, which is consistent with the conclusions of previous 

studies (e.g., Fan & Wang, 1998; Fan et al., 1999; Hu & Bentler, 1998), RMSEA showed small 

relation to sample size under true-population model specification and slightly recursive 

misspecified models (see Table 4). RMSEA was positively biased (overestimate the population 

value) by n at small sample size, and the size of bias tends to diminish as the degree of 

misspecification increase. In the present study, the interaction effect of sample size and model 

misspecification was significant, suggesting that sample size had different effect on RMSEA 

under different degrees model misspecification. Sample size had an effect on RMSEA under the 

true specification and had lesser effect under the slight misspecification. As the degree of 

misspecification increases, no effect of sample size has been observed. Therefore RMSEA is not 

recommended for use at small sample sizes (e.g., n ≤ 200) because it tends to over-reject truly 

specified models. 
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TABLE 2. Correlations With Sample Size, Mean and Standard Deviation, for All Fit Indices at All Model Specifications 

Index                                   True Specification Slight Misspecification Moderate 

Misspecification 

High Misspecification 

                Type   r M SD r M SD  r M SD r M SD 

GFI Nonre

c. 

0.709 0.982 

 

0.018 0.646 0.954 0.019 0.609 0.933 0.020 0.582 0.907 0.020 

Rec. 0.653 0.956 0.019 0.647 0.946 0.019 0.610 0.919 0.019 

SRMR Nonre

c. 

-0.790 0.024 0.013 -0.567 0.048 0.010 -0.538 0.058 0.009 -0.447 0.077 0.008 

Rec. -0.576 0.048 0.010 -0.614 0.050 0.010 -0.522 0.065 0.009 

MCI Nonre

c. 

0.033 0.999 0.021 -0.026 0.922 0.030 -0.019 0.865 0.035 0.000 0.780 0.038 

Rec. -0.023 0.926 0.030 -0.052 0.894 0.031 -0.077 0.811 0.035 

RMSEA Nonre

c. 

-0.314 0.011 0.017 0.093 0.068 0.016 0.053 0.089 0.013 0.006 0.116 0.012 

Rec. 0.094 0.066 0.016 0.095 0.078 0.014 0.087 0.106 0.012 

NFI Nonre

c. 

0.709 0.972 0.027 0.645 0.930 0.029 0.601 0.896 0.031 0.545 0.844 0.032 

Rec. 0.648 0.932 0.029 0.626 0.913 0.030 0.552 0.863 0.030 

RFI Nonre

c. 

0.709 0.941 0.057 0.645 0.864 0.055 0.601 0.809 0.056 0.545 0.722 0.057 

Rec. 0.648 0.868 0.056 0.626 0.840 0.054 0.552 0.755 0.054 

IFI Nonre

c. 

0.031 1.000 0.010 -0.075 0.958 0.016 -0.081 0.925 0.020 -0.082 0.872 0.023 

Rec. -0.070 0.961 0.016 -0.107 0.942 0.017 -0.153 0.892 0.022 

NNFI Nonre

c. 

0.030 0.999 0.023 -0.019 0.917 0.033 -0.005 0.859 0.038 0.023 0.766 0.044 

Rec. -0.016 0.921 0.032 -0.040 0.891 0.033 -0.057 0.802 0.040 

RNI Nonre

c. 

0.030 1.000 0.011 -0.019 0.957 0.017 -0.005 0.923 0.021 0.023 0.869 0.025 

Rec. -0.016 0.959 0.016 -0.040 0.941 0.018 -0.057 0.889 0.023 

CFI Nonre

c. 

0.309 0.997 0.008 -0.014 0.957 0.017 -0.005 0.923 0.021 0.023 0.869 0.025 

Rec. -0.010 0.959 0.016 -0.039 0.941 0.018 -0.057 0.889 0.023 

 

TABLE 3. Partial Eta-squared for the Different Sources of Variation for Each Fit Index 

Source GFI SRMR MCI RMSEA NFI RFI IFI NNFI RNI CFI 

Mis. Level x Mis. Type x Samp. Size* .003 .032 .003 .007 .004 .004 .006 .003 .008 .008 

Mis. Level x Mis. Type .479 .654 .364 .333 .377 .376 .367 .358 .359 .394 

Mis. Level x Samp. Size .015 .321 .004 .155 .015 .091 .028 .008 .003 .029 

Mis. Type x Samp. Size .001 .065 .005 .006 .001 .001 .003 .005 .006 .005 

Mis. Level .968 .963 .963 .955 .967 .961 .962 .956 .960 .956 

Mis. Type  .603 .694 .478 .454 .497 .498 .487 .477 .477 .478 

Samp. Size .782 .700 .001 .003 .719 .728 .011 .001 .001 .003 

*Mis. Level = Degree of Model Misspecification, Mis. Type= Type of Model Misspecification, Samp. Size= Sample Size 
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TABLE 4. Raw and Standardized Variances (Sum-of-Squared Deviations) Attributable of Degree of 

Misspecification, Sample Size and Residual for All Fit Indices. 

 

 
Variance 

due to 

Degree of 

Misspc. 

(
DMSS ) 

Variance 

due to 

Sample 

Size 

( SSSS ) 

Residual 

Variance 

 

 

(
RESS ) 

Total 

Variance 

 

 

(
TSS ) 

 

 

RESS /

TSS  

 

 

DMSS /

TSS  

 

 

DMSS / 

( SSSS +
RESS ) 

GFI 

GFI 

 

16.814 6.786 1.981 25.976 0.076 0.647 1.918 

SRMR 7.784 1.972 0.814 11.038 0.074 0.705 2.794 

MCI 144.810 0.010 21.098 168.245 0.125 0.861 6.860 

RMSEA 36.432 0.046 5.360 42.454 0.126 0.858 6.739 

NFI 48.869 14.792 5.993 70.486 0.085 0.693 2.351 

RFI 142.305 56.493 21.187 223.219 0.095 0.638 1.832 

IFI 47.665 0.040 6.497 55.125 0.118 0.865 7.292 

NNFI 160.232 0.014 26.041 189.324 0.138 0.846 6.150 

RNI 50.341 0.004 7.341 58.613 0.125 0.859 6.854 

CFI 48.032 0.035 6.577 55.638 0.118 0.863 7.264 
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ABSTRACT

We provide a simple methodology for approximating Value-At-Risk (VAR) of delta-gamma
method, which is well known method to obtain random returns of financial portfolios. VAR
of a financial portfolio is simply quantiles of a loss distribution in statistical sense. Under the
normality assumption of risk measures, delta-gamma method can be expressed as a general
linear combination of non-central chi-square random variables. After expressing an indefi-
nite quadratic form as the difference of two positive definite quadratic forms, one can obtain
an approximation to its density function by making use of the transformation of variables
technique. The main part of the proposed algorithm is approximating positive definite and
indefinite quadratic forms in normal random variables by making use of gamma-polynomial
density approximation technique. It is shown that the density function of a positive definite
quadratic form can be approximated from its moments in terms of a product of gamma base-
line density and a polynomial. A detailed step-by-step algorithm which is easy to implement
is provided. The proposed approximants produce very accurate VaRs throughout the range
of the distributions being considered. Some numerical examples illustrate the results.

Keywords: Value-At-Risk; Delta-Gamma Method; Approximation Algorithm; Moments;
Quadratic Forms.

1. INTRODUCTION

Financial investors are taking great efforts to estimate the probability of large portfolio losses,
which is caused by changes in the portfolio’s risk factors during the holding period such as
interest rates, currency exchange rates, stock prices, equities, commodities. An important
concept for quantifying and managing portfolio risk is Value-At-Risk (VAR), which is defined
as a quantile of the loss in portfolio value during a single period of time considered. If the
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value of the portfolio at time t is V (t), the holding period is t0, and the value of the portfolio
at time t+ t0 is V (t+ t0), then the loss in portfolio value during the holding period is

L = V (t)− V (t+ t0) . (1)

Since the loss in portfolio consist of a large number of instruments, we first map by replacing
the instruments by positions on a limited number of risk factors. The loss random variable
can be expressed with a complex function of g(X), which is the return for the portfolio or
interest over the holding period of time, where X is assumed to be a multivariate normal
random vector with zero mean vector and covariance matrix Σ. That is, X ∼ N p(0, Σ)
and Σ is a symmetric positive p × p matrix. Then, the complex function of g(·) can be
approximated by making use of the second order Taylor series approximation as

L ≈ d+ a′X+
1

2
X ΓX (2)

where d is a scalar, a is a p column vector and Γ is a p× p matrix derived from the current
portfolio positions. This is commonly called the delta-gamma approximation, see for instance
Britten-Jones and Schaefer (1999), Jorion (1997), Glasserman et al. (2000), Jaschke (2002).

Several methods have been proposed to compute quantiles of the loss distribution de-
fined in Equation (2), among others, Monte-Carlo simulation discussed by Glasserman et al.
(2000), Saddlepoint approximations studied by Feuerverger andWong (2000), Cornish-Fisher
expansions investigated by Zangari (1996) and Jaschke (2002), Johnson transformations con-
sidered by Longerstaey (1996), and Fourier-inversion studied by Rouvinez (1997). Mina and
Ulmer (1999) compare Johnson transformations, Fourier inversion, Cornish-Fisher approxi-
mations, and Monte Carlo simulation.

Those methods have their own merits and shortcomings. Monte Carlo simulation would
be only way to proceed for extremely complicated models. But the enormous computational
cost often is required to obtain accurate VAR estimates of the loss distribution in the region of
interest because the portfolio may consist of a very large number of financial instruments and
the large number of runs are required. The Edgeworth series approximation and Cornish-
Fisher expansion might be good options for approximating a density function when the
normal approximation does not provide enough accuracy. But if the target distributions to
approximate do not have the similar behavior of normal distribution, the Edgeworth series
approximation and Cornish-Fisher expansion often fail to provide good approximations. It
should be noted that Delta-Gamma method doesn’t have the same tail convergence rate with
normal distribution. The saddlepoint approximation methods are usually quite accurate in
the tail areas of the target density, but not for the middle range of the distribution of interest.
As pointed out in Reid (1988), saddlepoint approximation techniques are not widely used
in many scientific applications because it may not be easy to understand the concepts of
the techniques and apply them in many types of situations although they are very accurate
approximation tool in tail probability.
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A novel and accessible approach is proposed in this paper to calculating VAR of Delta-
Gamma method of the value of the financial portfolio. One may can re-express Delta-Gamma
method, which is stated as a generalized quadratic forms in normal random variables, as an
indefinite quadratic forms from simple algebraic operations. After expressing an indefinite
quadratic forms as the difference of two positive definite quadratic forms, the density function
of a positive definite quadratic forms can be approximated in terms of the product of a
gamma density function and a polynomial. Such representations are based on the moments
of a positive quadratic form, which can be determined from its cumulants by means of a
recursive formula. Then, one can obtain an approximation to the loss density function by
means of the transformation of variable technique. Finally, VAR, which is a quantile of loss
distribution, can be obtained by numerical integration and solving qunatile equations that
equate the loss distribution functions to a given probability. The proposed approximants
produce very accurate percentiles over the entire range of the distribution. A convenient
specially-designed approximation algorithm is also provided.

The rest of this paper is organized as follows. Section 2 introduces a brief introduction to
Delta-Gamma method and its moments. A moment-based approximation algorithm, which
is specially designed for calculating quantiles of indefinite quadratic forms in normal random
variables, are proposed in Section 3. Numerical examples are presented in Section 4. Some
relevant computational considerations are also discussed in Section 5.

2. DELTA-GAMMA METHOD AND ITS CUMULANTS

Delta-Gamma approximation by making use of the second order Taylor series approximation
to the complex function of g(X) may be written as

L ≈ d+ a′X+
1

2
XΓX (3)

where X is the vector of returns over one time period for our risk factors, d is a scalar, a is a p
column vector and Γ is a p×p matrix derived from the current portfolio positions. As derived
in Mathai and Provost (1992), the moment generating function of the loss distribution is
given by

ML(t) = E[etL]

= (2π)−p/2|Σ|−
1
2

∫
x

exp(
t

2
x′Γx− 1

2
(x− µ)′Σ−1(x− µ))dx

= |I − tΓΣ|−
1
2 exp

(
− 1

2
(µ′Σ−1µ− 2td) +

1

2
(µ+ tΣa)′(I − tΓΣ)−1Σ−1(µ+ tΣa)

)
= |I − tΣ

1
2 ΓΣ

1
2 |−

1
2 exp

(
t(d+

1

2
µ′Γµ+ a′µ)

+
t2

2
(Σ

1
2a+ Σ

1
2Γµ)′(I − tΣ

1
2ΓΣ

1
2 )−1(Σ

1
2a+ Σ

1
2Γµ)

)
(4)
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where t can be an arbitrarily small number neighborhood of zero. The associated cumulant
generating function is then given by

KL(t) = logML(t)

= −1

2
log |I − tC ′ΓC|+ t(d+ a′µ+

1

2
µ′Γµ)

+
t2

2
(C ′a+ C ′Γµ)′(I − tC ′ΓC)−1(C ′a+ C ′Γµ)

= t(d+ a′µ+
1

2
µ′Γµ) +

∞∑
j=1

tj

2j
tr(C ′ΓC)j +

∞∑
j=0

tj+2
(1
2
a′C(C ′ΓC)jC ′a

+
1

2
µ′ΓC(C ′ΓC)jC ′Γµ+ a′C(C ′ΓC)jC ′Γµ

)
= t(d+ a′µ+

1

2
µ′Γµ) +

1

2

∞∑
j=1

tj

j
tr(ΓΣ)j

+
∞∑
j=0

tj+2
(1
2
a′(ΣΓ)jΣa+

1

2
µ′(ΓΣ)j+1Γµ+ a′(ΣΓ)j+1µ

)
, (5)

where C denotes the symmetric positive square root of Σ and tr(·) denotes the trace of (·),
while its sth cumulant Ks is

Ks =
s!

2

(tr(ΓΣ)s
s

+ a′(ΣΓ)s−2Σa+ µ′(ΓΣ)s−1Γµ+ a′(ΣΓ)s−1Γµ
)
. (6)

It should be noted that tr(ΓΣ)s =
∑p

j=1 λ
s
j where the λj’s, j = 1, . . . , p, are the eigenvalues

of ΓΣ.

3. APPROXIMATION ALGORITHM FOR VALUE-AT-RISK

Let X ∼ N p(0, Σ) where Σ is a positive definite covariance matrix. Consider a loss random
variable

L = d+ a′ X+
1

2
XΓX (7)

where θ is a scalar, a is a p column vector and Γ is a p× p matrix derived from the current
portfolio positions. The following algorithm can be utilized to determine VAR of the loss
distribution, which is a quantile of the loss random variable.

Phase 1. Quadratic Forms

We re-express a generalized quadratic form for L to an indefinite quadratic form.
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L = ⌈+ a′X+
∞
∈
X−X = ⌈∞ +RAR . (8)

where A = 1
2
Γ and R ∼ N p(µ, Σ). Let Q = L −d1. Then Q is a indefinite quadratic form

in normal random variables.

Phase 2. Eigenvalues

We obtain a representation of an indefinite quadratic form in normal random variables in
terms of standard normal variables. On letting Z ∼ Np(0, I) and A is a p×p real symmetric
matrix, where I is a p × p identity matrix, one has R = CZ + µ where C denotes the
symmetric positive square root of Σ, and then the quadratic form

Q = R′AR

= (Z+ C−1µ)′C AC(Z+ C−1µ)

= (Z+ C−1µ)′PP ′C AC P P ′ (Z+ C−1µ) (9)

where R′ denotes the transpose of R, P is an orthogonal matrix that diagonalizes C AC,
that is, P ′C AC P = diag(λ1, . . . , λp), λ1, . . . , λp being the eigenvalues of AΣ in decreasing
order. Let vi denote the normalized eigenvector of C AC corresponding to λi (such that
C AC vi = λivi and vi

′vi = 1), i = 1, . . . , p, and P = (v1, . . . ,vp).

Remarks. We note that if A is not symmetric, it suffices to replace this matrix by (A+A′)/2
in a quadratic form.

Phase 3. Spectral Decomposition Theorem

Letting U = P ′Z, one has U ∼ Np(0, I) since P is a orthogonal matrix, and then, in light
of the spectral decomposition theorem,

Q = (U+ b)′diag(λ1, . . . , λp)(U+ b)

=

p∑
j=1

λj(Uj + bj)
2 (10)

where b = P ′C−1µ with b = (b1, . . . , bp)
′, U = (U1, . . . , Up)

′, and Uj + bj ∼ N (bj, 1),
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j = 1, . . . , p. Thus,

Q =
r∑

j=1

λj(Uj + bj)
2 −

p∑
j=r+θ+1

|λj|(Uj + bj)
2

≡ Q1 −Q2 , (11)

where r is the number of positive eigenvalues of AΣ and p− r− θ is the number of negative
eigenvalues of AΣ, θ being the number of null eigenvalues. That is, a noncentral indefinite
quadratic form, Q can be expressed as a difference of positive definite quadratic forms.

Phase 4. Moments

On letting Q1 ≡ R′
1A1R1 and Q2 ≡ R′

2A2R2, appearing in Equation (11) where A1 =
diag(λ1, . . . , λr), A2 = diag(|λr+θ+1|, . . . , |λp|), R1 ∼ N r(µ1, I) with µ1 = (b1, . . . , br)

′, and
R2 ∼ N p−r−θ(µ2, I) with µ2 = (br+θ+1, . . . , bp)

′, the bj’s being as defined in Equation (10),
as derived in Mathai and Provost (1992), the sth cumulants of Q1 denoted by k1(s) is

k1(s) = 2s−1(s− 1)!
r∑

j=1

λsj(sb
2
j + 1) , s ≥ 1 , (12)

and the sth cumulants of Q2 denoted by k1(s) is

k2(s) = 2s−1(s− 1)!

p∑
j=r+θ+1

λsj(sb
2
j + 1) , s ≥ 1 . (13)

The moments of a random variable can be obtained from its cumulants by means of the
recursive relationship obtained by Smith (1995). Accordingly, the hth moment when given
its hth cumulant is given by

µ(h) =
h−1∑
i=0

(h− 1)!

(h− 1− i)! i!
k(h− i)µ(i) . (14)

Phase 5. Gamma-polynomial Approximation

Gamma-polynomial density approximants, was proposed in Ha and Provost (2007) can be
applied to obtain the approximation to the distribution of each positive definite quadratic
form Q1 and Q2 on the basis of their respective moments. Let Y be a random variable
whose support is the real half line and let its raw moments E(Y h) be denoted by µY (h),
h = 0, 1, . . . . We are interested in approximating the density function of the random variable
Y , denoted by fY (x). A gamma-polynomial density approximant of degree ℓ, denoted by
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fY (x; ℓ), is

fY (x; ℓ) = ψ(x)
ℓ∑

i=0

ξix
i . (15)

This density approximant is expressed as the product of a gamma density, ψ(x), and a
polynomial adjustment,

∑ℓ
i=0 ξix

i. That is, the gamma baseline density function is

ψ(x) =
1

Γ(α) βα
xα−1e−x/β I(0,∞)(x) , (16)

where IA(x) denotes the indicator function, which is equal to 1 when x ∈ A and 0 otherwise,
and Γ(x) =

∫∞
0
tx−1e−tdt. The parameters α and β of the gamma baseline density function

are estimated from the first two moments of Y as follows:

α =
µY (1)

2

µY (2)− µY (1)2
and β =

µY (2)

µY (1)
− µY (1) , (17)

see for instance Johnson et al (1995, Section 17). The jth moments of the gamma baseline
density function is denoted by m(j), that is,∫ ∞

0

xjψ(x)dx ≡ m(j) . (18)

The hth moment of this gamma baseline distribution can be expressed as

m(h) =
βhΓ(α + h)

Γ(α)
= βh

h∏
i=1

(α + h− i) , h = 0, 1, . . . . (19)

From the moment matching technique between the moments of the target distribution and
the estimated gamma baseline distribution, we can obtain the coefficients ξi of the polynomial
adjustment. That is, the coefficients ξi satisfy the following system of linear equations:

(m(h), . . . ,m(h+ ℓ)).(ξ0, . . . , ξℓ)
′ = µ(h), h = 0, 1, . . . , ℓ. (20)

Phase 6. Transformation of Variables Technique

Since an indefinite quadratic form can be expressed as the difference of two positive definite
quadratic forms, its density function can be obtained from those of the positive definite
quadratic forms via the transformation of variables technique. For the problem at hand,
letting fa

Q(q), f
a
Q1
(q1) and fa

Q2
(q2) respectively denote the approximate densities of Q, Q1

and Q2, the supports of Q1 and Q2 being respectively (0,∞) and (0,∞), the approximate
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density function of the indefinite quadratic form Q is given by

fa
Q(q) =

{∫∞
0
fa
Q1
(q + x)fa

Q2
(x)dx q ≥ 0∫∞

−q
fa
Q1
(q + x)fa

Q2
(x)dx q < 0.

(21)

Phase 7. Value-at-Risk

The corresponding cumulative distribution function can then be evaluated by numerical
integration. Percentage points were obtained by equating the distributions functions to a
given probability and then by solving the resulting equations iteratively. One can finally
obtain VAR by adding d1 to the resulting percentage point.

4. NUMERICAL STUDY

In this section, we consider a simple example in order that the approximated distribution
can be compared with the exact distributions. We consider the case of a positive definite
central quadratic form in independently distributed in standard normal variables, which can
be expressed as

Q = R′AR =
r∑

j=1

λjYj , (22)

where A > 0, R ∼ Np(0, I), λj, j = 1, . . . , r, are the positive eigenvalues of A, the Yj’s,
j = 1, . . . , r are independently distributed central chi-square random variables, each having
one degree of freedom, and the λj’s are the eigenvalues of the matrix A. In this example,
λ1 = λ2 = 1, λ3 = λ4 = 3, and λ5 = λ6 = 7. Since the eigenvalues occur in pairs, the
exact density function can be determined from the positive part of Equation (23), which
was derived by Imhof (1961), wherein λ′k = λk/2, s = t = r/2, ρ = 0 and an empty product
is interpreted as 1. In this case, the density function of Q can be directly approximated
by means of Equation (15). In this case, α = 2.05085 and β = 10.7273. The tenth-
degree gamma-polynomial density approximant of Q for the given λk’s is shown in Figure
1, superimposed on the exact density. The difference between the exact and approximated
density functions is plotted in Figure 2. Certain VAR determined from the exact distribution
and fifteenth-degree gamma-polynomial approximants are included in Table 1. The difference
between the exact and approximated distribution functions is also plotted in Figure 3.
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Figure 1: PDF for Exact density (dashed) & gamma-polynomial approximant
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Figure 2: Difference between Exact density & gamma-polynomial density approximant
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Figure 3: Difference between Exact distribution & gamma-polynomial distribution approxi-
mant
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Table 1: Certain Value-At-Risks

CDF Gamma-poly (d=10) Exact
0.01 2.3753 2.50106
0.05 4.84055 4.84823
0.10 6.73377 6.69306
0.50 18.2224 18.2735
0.90 42.1646 42.0881
0.95 51.7819 51.8777
0.99 74.5424 74.4587

Table 2: Certain extreme Value-At-Risks

CDF Gamma-poly Exact
0.0001 0.307168 0.479181
0.001 0.872502 1.06936
0.999 106.509 106.701
0.9999 138.257 138.937

g(q) =



∑s
j=1

λ′
j
t−2 e

−2q/(2λ′j)

2

(∏s
k=1,k ̸=j(λ

′
j−λ′

k)

)(∏t
k=s+1(|λ′

j |+|λ′
k|)
) , q ≥ 0

∑t
j=s+1

|λ′
j |t−2 e

2q/(2|λ′j |)

2

(∏t
k=s+1,k ̸=j(|λ′

j |−|λ′
k|)
)(∏s

k=1(λ
′
j+λ′

k)

) , q < 0.

(23)

We found that the 95th percentiles obtained from approximants of degrees 4, 6, 8, 10
and 12 are respectively 51.1927, 52.2512, 52.05, 51.7819 and 51.7897 whereas the exact 95th

percentiles is 51.8777. It is seen that the approximations converge to the exact 95th per-
centile. The degree of the approximant can be selected according to the desired level of
precision. Certain extreme VAR obtained from the exact density function and fifteenth-
degree gamma-polynomial approximants are presented in Table 2. More precision can be
obtained by including additional terms in the approximations. However, when several suc-
cessive approximate density functions are seen to be nearly identical, not much additional
precision will be gained by making use of more moments.
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5. COMPUTATIONAL CONSIDERATIONS AND CONCLUDING
REMARKS

The proposed density approximation methodology is not only conceptually simple since it is
essentially based on a moment-matching technique, but it also is easy to program and con-
sistently yields remarkably accurate percentage points. Although most applications require
relatively few moments, the proposed approximants can also accommodate a large number
of moments, if need be. The proposed approximation algorithm, which is designed specially
for VAR of Delta-Gamma method, has a few remarkable features. First, the step-by-step
approximation algorithm is a competitive technique even when the portfolio distribution is
very skewed whereas the Cornish-Fisher approximation provides accuracy only when the
portfolio distribution is relatively close to normal. This technique achieves a sufficient accu-
racy potentially fast once moments of two positive definite moments are calculated. Second,
this technique achieves accurately all the range of VARs since the proposed algorithm pro-
duce very accurate percentiles over the entire range of the distribution, whereas Saddlepoint
approximation accurately determines only tail probabilities. Finally, it is seen in the example
that the approximations converge to the exact percentiles.
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ABSTRACT 

 

Habibullah et al. (2009) have developed a differential equation for generating a class of SCUI 

distributions (i.e. those which are invariant under the reciprocal transformation), and have 

demonstrated its usefulness by deriving from it a density function which is flexible in its 

application and provides a useful model for life-data. In this paper, we propose a much more 

generalized form of the differential equation for generating the class of SCUI distributions so 

that the above-mentioned differential equation becomes a special case of this one. The utility of 

this generalized form lies in the derivation of a large number of density functions that are not 

derivable from the differential equation proposed by Habibullah et al. (2009) but provide useful 

models for real data. Some of the well-established density functions are presented as examples. 

 

1. INTRODUCTION 

 

Utilization of differential equations in special problems of probability theory seems to have 

originated in the last decade of the nineteenth century. Pearson (1895) notes that in the limiting 

case, the hypergeometric distribution can be expressed in the form 

 

  
 

2
0 1 2

x a fdf

dx b b x b x




 
                       (1.1) 

 

He utilizes this fact to obtain the Pearson system of continuous distribution functions. Dunning 

and Hansen (1977) present the generalized Pearson distributions as the solution of the 

differential equation 
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                     (1.2) 

 

where both m and n are greater or equal to 1. Cobb (1980) presents a differential equation of the 

form  
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g xdf
f x dx

dx h x
 ,   0h x  ,  x Int A                      (1.3) 

 

where  Int A  is an interval of the real line with the choice of A different for  different densities, 

and  g x and  h x  are polynomials such that the degree of  h x  is one higher than the degree of 

 g x . He illustrates three types of probability distributions        ( i.e. Normal type, Gamma type 

and Beta type ) that can be generated from this differential equation under certain admissible 

conditions on  g x  and  h x .  

By applying the transformation 1/Y X  in the Pearson differential equation,    Ahmad (1985) 

obtains a differential equation which, under certain conditions, generates a class of inverted 

distributions. He focuses on a special case of Cobb’s differential equation, the one in which the 

degree of  g y is two and that of  h y  is three. Specifically, he discusses the differential equation 

of the form  
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2 1 0
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                     (1.4) 

 

where the coefficients 0 1 2, ,a a a  are given by 0 22 1a B  , 1 22a B a  , 2 02a B , and uses it to 

generate the Inverted Pearson System of probability distributions. The inverted class of 

distributions generated by the above differential equation includes the Inverted Normal, Inverted 

Type 1 (Inverted Beta), Inverted Type III, Inverted Type V, Inverted Type II, Inverted Type VI, 

Inverted Type VII and the Inverted Type IV distributions. Also, Ahmad (1985) develops 

relationships between the four parameters of the above differential equation (i.e. 0 1 2, ,B B B  and a ), 

and the first five moments of the probability distribution.   

Chaudhry and Ahmad (1993) consider the following special case of differential equation  1.2  
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, 3 0c                        (1.5) 

 

They obtain a probability function as the solution to the differential equation  1.5 , also obtain a 

relationship between the derived probability function and the Inverse Gaussian distribution, and 

show that the derived model is more suitable than the lognormal distribution for a particular data 

set. 

Habibullah et al. (2009) propose the following differential equation which yields an 

unlimited number of differential equations under a set of conditions.  
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                (1.6) 

 

They demonstrate its usefulness by deriving from it a density function which is flexible in its 

application and provides a useful model for life-data.  
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In this paper, we propose a much more generalized form of the differential equation for 

generating the class of SCUI distributions so that the above-mentioned differential equation 

becomes a special case of this one. It is shown that a large number of SCUI distributions --- 

including some of the well-established density functions ---- that are not derivable the 

differential equation of Habibullah et al. (2009) fall under the category of the newly derived 

differential equation. 

 

2. SCUI DISTRIBUTIONS 

 

Kleiber and Kotz (2003) use the term ‘closed under inversion’ in the sense that the original 

distribution and the inverse distribution have the same domain of support, and belong to the same 

parametric class. Habibullah and Ahmad (2006) define Strict Closure Under Inversion as the 

case where the distribution of the reciprocal of a continuous random variable is identical to that 

of the original random variable. They use the abbreviation SCUI for distributions that are strictly 

closed under inversion 

 

3. A GENERALIZED DIFFERENTIAL EQUATION FOR  

GENERATING SCUI DISTRIBUTIONS 

 

We propose the following theorem: 

 

Theorem 3.1: Let  g y  be the pdf of lnY X where the random variable X  has the pdf   f x

defined on  0, . If  
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                (3.1) 

 

then  f x is SCUI provided that the following conditions hold: 

 

Case I:  w y  is an odd function of y i.e.    w y w y    

 

(a) 0ia   and  0jb   for some , ,0 ,  i j i j n  , and 
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 where m  is 
2

n
or

1

2

n 
 according as  n is an even or odd non-negative integer, 

Case II:    
1

w y w y


     

(a) ai ≠ 0 and  bj ≠ 0 for some i,j, 0  i,  j  n, 
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(b)  
0

0, 0,1,2,...., 1,
j

i i n j i n j i
i
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                (3.3) 

 

Proof:   

Case I:  Note that  
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X  being strictly closed under inversion  implies    g y g y   which leads to 
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This implies that

  

  

         
    

    

1 1

1 0 1 0

1

1 0

1

1 0

.... ....

....

.... 0,

n n n n

n n n n

n n

n n

n n

n n

b w y b w y b a w y a w y a

a w y a w y a

b w y b w y b n even

 

 









                   

         

         

 

and 

         
    

    

1 1

1 0 1 0

1

1 0

1

1 0

.... ....

....

.... 0,

n n n n

n n n n

n n

n n

n n

n n

b w y b w y b a w y a w y a

a w y a w y a

b w y b w y b n odd

 

 









                    

         

          

 

It thus follows that 
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Case II: The proof is similar to that of Case I. 
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4. EXAMPLES 

 

Letting    yw y e  in differential equation  3.1 ,  we  obtain  the  special case 
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                (4.1) 

 

which yields SCUI distributions under the set of conditions (3.3). We utilize differential equation 

(4.1) to present examples of some of the well-established density functions that are SCUI but are 

not derivable from the differential equation proposed by Habibullah et al. (2009): 

 

4.1 F Distribution 

 

Differential equation  4.1  with, 1n   and 1 0 1 0, , 2, 2b n b n a a    
 
yields 
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with normalizing factor   
2

2

n
k n

  
    

  
 

 

The transformation lnY X  yields the F distribution with equal degrees of freedom. 

 

4.2 Half – Cauchy Distribution 

 

Putting 2n   and 2 1 0 2 1 01, 0, 1, 1, 0, 1b b b a a a        in differential equation  4.1 , we have 
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Applying the transformation YX e , we obtain 
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which is the standard half – Cauchy distribution. 

 

4.3 Birnbaum Saunders Distribution 

 

Putting 3n   in  4.1 and letting 3 1b   ,  2
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so that for YX e  

  
     

3

2 22
1

exp / 2 2 1 exp / 2 , 0f x x x x x
x


                    

which is the Birnbaum Saunders distribution with 1  . 

 

5. CONCLUDING REMARKS 

 

Differential equation (3.1) generates a much wider class of SCUI distributions than differential 

equation (1.6) proposed by Habibullah et al. (2009). It seems to have the potential for generating 

a number of new SCUI density functions useful in modeling real data. 
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ABSTRACT 

 

The Clusterwise Regression Model is applied to carry out cluster analysis within a regression 

framework. This paper employs logistic regression model in the clusterwise framework by using 

mathematical programming. The proposed “Clusterwise Logistic Model” integrates the 

utilization of logistic regression as a regression and discriminant tool. Therefore, it considers two 

types of errors to be used as clustering criteria; the sum of residuals, as in the regression analysis, 

and the sum of classification errors, as in the discriminant analysis. In the proposed model, the 

clustering membership parameters are introduced as probabilities. Thus, every subject has a 

number of probabilities equivalent to the total number of clusters. The theoretical design of the 

proposed mathematical programming model is based on non-linear goal programming, with a 

linear objective function and non-linear constraints. A set of simulation scenarios has been 

developed to assess the designed model. The simulation study shows that the correct 

classification has been enhanced by using the proposed mathematical programming model, as 

compared with the non-clustered logistic model, whether it is estimated by the maximum 

likelihood or the mathematical programming. In addition, the proposed mathematical 

programming model isn’t influenced with the common logistic regression drawbacks. Even when 

the mean squared error of Clusterwise regression model surpasses the mean squared error of ML 

and the MP logistic models, the suggested model retains its advantages, because its statistics are 

very close to the non-clustered models statistics. 

 

Keywords: Clusterwise model, Logistic regression, Non-linear programming approach, Cluster 

analysis, Goal programming. 

 

1. INTRODUCTION 

 

In real data analysis there are situations when multi-statistical techniques must be used. In such 

cases, the mathematical programming can be introduced as an alternative approach to integrate 

more than one statistical technique with multi-objective functions in one model with a single 

objective function. One of these models is the clusterwise regression model that is used to 

perform cluster analysis within a regression framework. This sort of models seeks to estimate the 

cluster membership parameters and the regression model parameters simultaneously. The 

clusterwise regression model has two main advantages. While the traditional regression model 

assumes the regression coefficient to be identical for all subjects in the sample, the clusterwise 

regression model allows it to vary with subjects of different clusters (Lau et al., 1999). On the 

other hand, the cluster analysis and regression analysis in the classical two-step procedure are 
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unrelated. Also it is sometimes hard to select criteria to cluster data since the approach for the 

cluster analysis is not unique. Therefore the second advantage of the clusterwise regression 

model is that it considers the interrelations between cluster analysis and regression analysis (Luo 

2005).  

The term “clusterwise” was first coined by Spath (1979, 1981, 1982, 1985). Spath (1979) 

proposed the "exchange algorithm" which is used to minimize the sum of the square errors, for 

partitions of length (k) and corresponding sets of parameters. The exchange algorithm is further 

generalized by Spath (1986) and Meier (1987), as stated in Lau et al., 1999, to minimize the sum 

of the absolute errors. In 1980 Aitkin and Wilson, as stated in Lau et al., 1999, introduced 

another approach "the mixture model", which is a parametric procedure with strong distributional 

assumption on the noise term. The mixture model does not directly classify subjects into clusters, 

instead, it computes the cluster membership probabilities for each subject. 

In 1999 Lau et al., generalized all previous attempts in what they called "Generalized 

Clusterwise Regression Model", which incorporates the parameter heterogeneity in traditional 

regression using a mathematical programming model. As the cluster membership parameters in 

the clusterwise regression model are unknown, Lau et al., (1999) showed that the estimation of 

the clusterwise regression is a tough combinatorial optimization problem. They extended this 

effort to integrate the cluster analysis with discriminant analysis, in what they titled "Clusterwise 

Discriminant Model" that was developed to incorporate parameter heterogeneity into traditional 

discriminant analysis 

The purpose of the present paper is to introduce the "Generalized Clusterwise Logistic 

Model". In this model, the clusterwise model is developed in the framework of logistic 

regression model. The importance of the proposed model arises from the reliable results of 

utilizing the logistic regression as a regression and a discriminant tool in real life.  

One of the reasons why logistic regression model is important is that it can be used to predict 

a binary dependent variable based on continuous and/or categorical explanatory variables. In 

addition, it can determine the percent of variance in the dependent variable explained by the 

explanatory variables; to rank the relative importance of explanatory variables, to assess 

interaction effects and to understand the impact of covariate control variables (Christensen 

1997). Unlike Ordinary Least Square (OLS) regression, logistic regression does not assume 

linearity of relationship between the explanatory variables and the dependent, does not require 

normally distributed variables, does not assume homoscedasticity, and in general has less 

stringent requirements (Draper & Smith 1998) and (Greene 1997). Also, the success of the 

logistic regression can be assessed by observing the classification table, which shows correct and 

incorrect classifications of the dichotomous, ordinal, or polytomous dependent (Hosmer & 

Lemeshow 2000). Another reason for its importance is that instead of classifying an observation 

into one group or the other, as in the discriminant analysis, the logistic regression predicts the 

probability that an indicator variable is equal to one (success case). To be precise, logistic 

regression model predicts the log odds1 that an observation will have an indicator equal to one 

(Agresti 2002). 

The growing use of the logistic regression in many applications, as in epidemiological 

studies, social science, medical experiments …etc., encourages the use of a technique like 

clusterwise model. The studied population or respondents in most cases are usually 

heterogeneous. Accordingly, the construction of the Generalized Clusterwise Logistic Model 

                                                 
1
 The odd of an event is defined as the ratio of the probability that an event occurs to the probability that it fails to 

occur. 
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based on logistic regression model is expected to gain much attention in various fields, especially 

social sciences.  

Therefore, the current paper aims to construct the theoretical framework of the Clusterwise 

Logistic Model, as well as to compare the efficiency of the constructed models with the logistic 

regression models that use the maximum likelihood and the mathematical programming 

approaches. This comparison depends on simulation studies to reveal the advantages and the 

limitations of the proposed models.  

 

2. LOGISTIC REGRESSION USING MATHEMATICAL PROGRAMMING 

 

Hamed et al., (2009) introduced a non-linear goal programming model that estimates the logistic 

regression model. Understanding this model is a prerequisite to understand the proposed model. 

The base concept of their model was focused on the role of logistic regression as a part of 

regression analysis and discrimination analysis models. The aim in dealing with logistic 

regression is always to minimize the residuals and maximize the probability of correct 

classification. Initiated from these objectives, two types of constraints were developed to achieve 

the two objectives simultaneously. The first constraint was constructed to limit the deviations 

between the expected and predicted values for the response variable    , to equal zero. However, 

to avoid the non-optimality or infeasibility, two complementary decision variables were 

included, in the form of goal programming. These two non-negative decision variables 

            were designed to capture the corresponding negative and positive deviations. Thus, 

these S's were expected to play the role of the sum of the residuals in linear regression. 

Therefore, this constraint in the context of regression analysis is typically equivalent to residuals 

with zero mean. Thus, the first objective of the model was to minimize the sum of residuals. 

 

     
         

           
 

 

   

        

 

(1) 

 

where:  

: the subject subscript for the sample of size n. 

 : the (j+1) vector of explanatory variables coefficients and the intercept. 

  : the i-th vector of the explanatory variables and the intercept, where    is the unit vector. On 

the other hand, the logistic regression model is used as a discrimination model. Therefore, the 

logistic model must achieve a significant level of the subjects’ correct classification, i.e. 

maximize the probability of correctly classified subjects.  
The philosophy of the classification according to the logistic regression is based on a cut-off 

value for the predicted response variable, after estimating the regression’s coefficients. Most of 

statistical packages consider the cut-off value 0.5 as an unbiased probability of the binary 

variable's categories, which reflect the probability of each category of the binary response 

variable. In contrast of building a thin separate line, Hamed et al., (2009) suggested  to represent 

the separate line as an interval around the cut-off value, with   , where  is an arbitrary small 

positive value. Moreover, a non-negative decision variable (d) was introduced as an error of 

deviation from the separation interval. This led the authors to construct the next two constraints: 
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(2) 

         

           
                                      

 

(3) 

 

The mechanism of these constraints is to classify the i-th subject to equation (2) if       , or to 

equation (3) otherwise. In these constraints (2 and 3) the term      represents the required 

positive real value that is needed to extract the subject (i) above or below the separation interval. 

Therefore, Hamed et al., (2009) defined their second objective by minimizing the sum of all 

deviations that will be needed to clean the separation interval from any subject. So, they defined 

a non-linear goal programming model with linear objective function and non-linear constraints to 

estimate the logistic regression model: 
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                  (9) 

 

This model has many theoretical advantages, as it can accept any function of linear and/or non-

linear constraints of the logistic regression’s parameters, such as budget constraints. Moreover, it 

doesn't require any assumptions on the residuals. In addition, Hamed et al., (2009) used 

simulation scenarios to prove some characteristics of their model, especially the conclusion that 

it wasn’t influenced with the common logistic regression drawbacks. Also, they showed that 

merging the two types of errors significantly increased the total number of correctly classified 

subjects and introduced more robust estimates of the regression’s coefficient. 

 

3. GENERALIZED CLUSTERWISE LOGISTIC MODEL  

 

In this section the proposed Clusterwise Logistic Model is introduced. It is designed to include a 

predetermined and unrestricted number of clusters (e.g. K clusters) and number of explanatory 

variables (e.g. J explanatory variables). The idea of clusterwise is based on a classification 

criterion that is employed simultaneously with a sort of regression model to classify the subjects 

into clusters through what is convenient to call as cluster membership parameters. Lau et al., 

(1999), introduced the first attempt in that manner in their Generalized Clusterwise Regression 

Model. In the beginning, they introduced the cluster membership parameters as positive binary 
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decision variables. Therefore, their first defined model was a non-linear integer programming 

model. In the same paper, they proved that it is possible to transfer this model to a non-linear 

programming model by redefining the cluster membership parameters. Their transformation was 

based on introducing new constraints to restrict the sum of the cluster membership parameters to 

equal one with respect to every subject in the sample, and to introduce every membership cluster 

as a positive quantity that is bounded in the interval [0,1]. Moreover, they related the cluster 

membership parameters to the associated likelihood function. Thus, their model’s mechanism 

allows the subject to be classified to a specific cluster if it is enhancing the overall fitted model in 

that cluster more than the other clusters. It is noted from this mechanism that the cluster 

membership parameters are playing the role of weights, i.e. they weight the relative importance 

of a specific cluster according to the fitting criterion. 

Initiated from this mechanism, there are two main tasks to pursue; find a criterion that can be 

used to classify the subjects into homogeneous clusters and design the cluster membership 

parameters. To find this criterion let us reformulate the two types of errors; the regression 

residuals (equation 1) and the classification errors (equations 2 and 3). The (K) clusters are 

mutually exclusive, thus the subject (i) will be classified to only one cluster. Therefore, we can 

break          
 

   
 in equation (1) to (K) parts that present the estimation in each cluster. 

 

          
      

    

        
    

  

 

   

 

   

        

 

(10) 

 

where:  

: the cluster subscript. 

: the number of clusters. 

   : the membership of the i-th observation to the k-th cluster. 

  : the (j+1) vector of explanatory variables coefficients and intercept in the k-th cluster. 

As in the above equation     are the cluster membership parameters, and they are 

multiplied by the sum of residuals to present the probability of a subject’s belonging to a specific 

cluster. Actually these C’s are not expected to produce ones and zeros, but they produce 

probabilities. Thus, for every subject there will be (K) probabilities, everyone presents the 

belonging of that subject to the associated cluster, and the final decision is related to the highest 

probability. 

Regarding the second type of errors, the classification rule should target each cluster 

individually. Therefore the subject that is classified to the cluster (k) uses this cluster 

classification rule, i.e. each cluster has its separation interval. 
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where:  

   : the deviation of the i-th observation from the separation interval in the k-th cluster. 
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From the above discussion it is clear that the desired objectives become more complicated. It 

is of interest to minimize the sum of residuals between the observed and the predicted response 

variable categories, and the sum of deviations from the separation interval in every cluster. So, 

the clustering criteria will be these two types of errors. Thus, the subject will have a highest 

probability of belonging to a specific cluster, if it achieves a minimum deviation from the fitted 

line in that cluster as compared with other clusters, and it is out of the separation interval or 

needs a slight pushing to be out of it in that cluster. Therefore Clusterwise Logistic Model can be 

written in the form of non-linear goal programming, with a linear objective function and non-

linear constraints as follows: 
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(19) 

        (20) 
 

In the previous model it can be noticed that the membership parameters       are defined 

to represent the probability that subject (i) belongs to cluster (k). Therefore, they are forced to be 

bounded between zero and one, and to be summed to unity w.r.t. the i-th subject. The estimation 

of these membership parameters is obtained using a direct way and an indirect way. The direct 

way is the objective function (13). The membership probability decreases by increasing the 

deviation needed to separate the corresponding subject from the separation interval in the 

corresponding cluster, and vice versa.  

The indirect way results from linking the objective function (13) with the constraint (16). The 

membership probability of the i-th subject increases in the cluster that minimizes the difference 

between the observed and predicted values of this subject. Therefore, these direct and indirect 

relations wrap up the two types of errors through linking the increase in the membership 

probability with the decrease in these two types of errors at the level of each subject. Moreover, 

the constraint (18) leads to breaking the observations to more than one cluster by enforcing the 

allocation to only one cluster.  In contrast of classifying all subjects into one cluster, this 

constraint requires every cluster to attain at least one subject. 



658 

 

 

4. CONCEPTS AND DESIGN OF THE SIMULATION STUDY  

 

This section is focused on the simulation study that has been made to assess the efficiency of the 

proposed model. For this purpose, the proposed model is compared with the non-clustered 

logistic regression model that is estimated by the maximum likelihood (ML) and the 

mathematical programming (MP) approaches. The design of the simulation study is founded on 

what is stated in the literature about simulation of logistic regression models (Christensen 1997). 

The simulation study is based on generating the covariates and the parameters to calculate the 

response variable’s probabilities. Because these probabilities are in a deterministic pattern, they 

are compared with a randomly generated uniform (0,1) to classify the observations (subjects) and 

produce the binary random response variable (Xie 2005). In our simulation, as regards the first 

part of this scenario, the set of covariates is randomly generated from pre-specified distributions 

in each run, rather than fixing the values of the covariates at pre-specified values from only one 

generating process. This means that the number of runs equals the number of generated sets of 

covariates. This simulation scenario can be considered more reflective of observational studies 

rather than the traditional experimental designs that take control over covariates. In all runs the 

assumed population parameters of the logistic model are drawn from a symmetric uniform 

distribution (-3,3) (Xie 2005)
2
. Thus the actual probabilities      are estimated and compared 

with an independent uniform (0,1) to generate a binary random response variable, which is 

loaded with a noise part. 

This simulation strategy is based on three factors; sample size, covariates' distribution, and 

covariates' multicolinearity
3
 and extreme values. These three factors are selected to reflect the 

advantages and disadvantages of the simulated model. Four sample sizes have been selected to 

reflect four corresponding different levels. The first level 20 represents the small sample size, 

and the sample size 50 represents the reasonably moderate sample size. In addition, the 200 and 

500 levels represent the reasonably large and the large sample sizes respectively. Also, both the 

collinear and independent covariates are used. The collinear continuous cases are overloaded 

with 20 percent of extreme values
4
 that have been equally distributed above and below the 

observations
5
. 

The explanatory set in each run includes three covariates. Five different marginal 

distributions and a multivariate normal distribution of the covariates are used. These distributions 

represent both skewed and symmetric cases in continuous variables, as well as balance and high 

imbalance in binary variables. The pre-specified multivariate normal distribution's parameters 

are       and       for the first variable, and     and     for the second variable. In 

the collinearity case the correlations between    and    are significant at the 90's percent. The 

five marginal distributions are: the symmetric continuous uniform distribution (-3,3), the discrete 

                                                 
2
 We want to deeply thank; Prof. Ronghua Luo (Peking University), Prof. Shelley B. Bull (University of Toronto), 

Prof. Celia Greenwood (University Avenue Toronto) and Prof. Hun Myoung Park (Indiana University) for their 

valuable clarifications and beneficial comments through emails about simulation process, especially in the case of 

ordinal logistic regression.   
3
 In the simulation study the introduced collinearity is not the perfect multicolinearity, because this is not the case in 

the real situation. Therefore, the simulation scenario is based on the theory that guarantees an associated level of 

multicolinearity with the existence of highly correlated bivariate normal variables (Bain & Engelhardt 1992). 
4
 These extreme cases have been generated from a uniform distribution with suitable parameters. 

5
 The correlation has been tested after the insertion of extreme values to be sure that the correlated variables still 

preserve the same level of correlation, which is 90 percent. 
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uniform distribution (0,6), and three Bernoulli distributions: two imbalanced distributions 

Bin(1,0.8) and Bin(1,0.15), and approximately balanced distribution Bin(1,0.5). Therefore, there 

are 20 combinations between covariates' distribution, multicolinearity and sample size. To 

determine the number of runs, it is assumed that every combination from these 20 combinations 

is a separate process. As in the literature (El-Haik & Al-Omar 2006) the number of runs can be 

determined by using the law: 

 

  
      

 
  

  
 

(21) 

 

where: 

    : is the standard normal score. 

: is the desired margin of error, which is the half-length of the confidence interval with a 

          confidence level. 

  : is the variance obtained from the runs. 

By using 95% confidence level, the performance mean obtained from the simulation model is 

estimated within      of the true unknown mean and from 20 runs as pilot cases, the standard 

deviation for the correct classification percent is 3.6 percent. Therefore the number of runs in 

each combination and every sample size is calculated to be 200 runs, with total 4000 runs in each 

suggested model. 

The simulation's results are based on two indices, as follows: 

A. The correct classification percent: is the percentage of correctly classified subjects to the 

sample size. 

B. The mean squared error: is the mean squared deviance between the actual probability 

     and the estimated probability      . 

These simulated runs have been done through building routines using four packages: SPSS, 

MATLAB, GAMS and Excel. The estimation of logistic model using maximum likelihood 

approach depends on two packages MATLAB (R2007b) and SPSS (16). MATLAB (R2007b) 

has been used for estimating the logistic regression model. This program uses the maximum 

likelihood (ML) method through a robust non-linear fitting that iteratively reweights response 

values and re-computes a least squares fit. The least squares component of the algorithm differs 

from linear least squares, but the reweighting loop is identical to that for robust linear methods. 

We built our own routines that allow us to simulate the mathematical programming models, 

which are based on MATLAB (R2007b) and GAMS (22.7). Moreover, MS Excel has been used 

to link and summarize the simulations results. 

 

5. SIMULATION STUDY RESULTS 

 

The logistic regression using the maximum likelihood (ML) and the mathematical programming 

(MP) approaches
6
, and the Clusterwise Logistic Regression

7
 Model have been experienced using 

the same runs. As a classification method, the correct classification percent is one of the 

important logistic regression's characteristics. The results from table 1 show that the correct 

                                                 
6
 The used runs in the case of logistic regression using maximum likelihood and mathematical programming have 

been published in Hamed et al., (2009). 
7
 The simulated data are hypothesized to be classified to only two clusters. 
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classification percent of Clusterwise Logistic Model is not less than 96 percent and its average 

hits 98.7 percent. This result is notably higher than its counterpart in both ML and MP logistic 

models. Meanwhile the correct classification percent is significantly higher in MP logistic model 

than in ML logistic model for sample sizes 20 and 50. In reasonably large sample size 200 the 

correct classification percent shows some significant differences toward MP logistic model and 

in the large sample size 500 it reverses toward ML logistic model. 

On the other hand, 75.6 percent of the 4000 runs do not include any tie, and 23.3 percent of 

runs do not have more than 10 percent of ties. However, the ties always have the same 

probability under any cluster. This characteristic is very important, whereas if the model 

produces any tie, these ties are not expected to have different estimated probability       in the 

different clusters. 

To demonstrate the advantage of the proposed model, the correct classification percent 

results are supported by the estimated mean squared error results, which are based on comparing 

the differences between the actual and the estimated probabilities. The actual probabilities are 

based on the actual parameters obtained from the simulation process. For the small, moderate 

and reasonably large sample sizes, the MSE in Clusterwise Logistic Model is higher than the 

corresponding ones in ML and MP logistic models. However, the MSE in Clusterwise Logistic 

Model is sharply decreased in the large sample size (500) to be lower than ML and MP logistic 

models.  

 

6. COMMENTS AND CONCLUSION 

 

This section focuses on the main findings and conclusions of the current paper. The paper 

introduces “Clusterwise Logistic Model” by using mathematical programming. The theoretical 

framing of this model is non-linear goal programming with a linear objective function and linear 

constraints. The model uses both of regression sum of residuals and sum of classification errors 

as clustering criteria. These criteria have been linked to the clustering membership parameters, 

which are introduced in a probabilistic form. Thus, at the level of subjects, less deviation from 

the fitted line and less margin of errors that is needed to clear the separation interval for a 

specific cluster, imply more probability to belong to this cluster. 

The proposed model has been compared with the non-clustered logistic regression that is 

estimated by maximum likelihood and mathematical programming approaches through a set of 

pre-designed simulation scenarios. 

Three main conclusions can be obtained from these scenarios. The first is that the 

mathematical programming approach contributes to the enhancement of correct classification, 

compared with the maximum likelihood approach. In addition, Clusterwise Logistic Model 

yields a significant enhancement. This means that the clustering approach succeeds in producing 

homogeneous clusters, which improves the overall correct classification. Secondly, the proposed 

mathematical programming model is not influenced with the common logistic regression 

drawbacks.  

Hamed et al., (2009) used a published biostatistics case study to prove that their proposed 

MP logistic model is not influenced with the separation or monotone likelihood problem. As 

Clusterwise Logistic Model is based on MP logistic regression model, it is expected to maintain 

the same condition, and to produce finite parameters. Lastly, the suggested Clusterwise Logistic 

Model shows higher mean squared error than MP and ML logistic models’. However, this does 

not deprive the Clusterwise Logistic Model from its advantages, because its statistics are very 
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close to both MP and ML logistic models’. In addition, the theoretical advantage of the proposed 

Clusterwise Logistic Model is that it is flexible enough to accept any linear/nonlinear 

constraint(s), which is theoretically needed in many applied studies.  

 

 

Table (1): Correct classification percent of ML and MP logistic regression models, and MP 

clusterwise logistic regression model for different covariates' combinations and different sample 

sizes, at 4000 runs.
(1)

 

Sample 

Size 
Distribution Multicolinearity 

Logistic (ML) Logistic (MP) Clusterwise 

Logistic 

(MP) 

n=20 

Mixed 
Collinear 89.8 87.5 96.3 

Independent 94.3 93.0 98.4 

Continuous 
Collinear 94.8 93.6 98.0 

Independent 95.3 94.3 97.8 

Discrete Independent 92.5 91.2 97.1 

n=50 

Mixed 
Collinear 89.6 88.7 98.9 

Independent 91.4 90.7 99.0 

Continuous 
Collinear 92.3 91.7 98.7 

Independent 93.8 93.3 99.3 

Discrete Independent 93.3 93.0 98.7 

n=200 

Mixed 
Collinear 90.3 90.2 99.1 

Independent 92.4 92.2 99.5 

Continuous 
Collinear 92.9 92.6 99.5 

Independent 93.5 93.5 99.4 

Discrete Independent 92.4 92.3 98.6 

n=500 

Mixed 
Collinear 90.4 90.6 99.4 

Independent 90.4 90.8 99.5 

Continuous 
Collinear 91.2 91.5 99.1 

Independent 91.2 91.7 99.2 

Discrete Independent 92.4 92.6 97.6 

(1) Each cell consists of 200 runs. 
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Table (2): Mean squared error of ML and MP logistic regression models, and MP clusterwise 

logistic regression model for different covariates' combinations and different sample sizes, at 

4000 runs.
(1)

 

Sample 

Size 
Distribution Multicolinearity 

Logistic 

(ML) 

Logistic 

(MP) 

Clusterwise 

Logistic (MP) 

n=20 

Mixed 
Collinear 0.026 0.027 0.050 

Independent 0.022 0.030 0.039 

Continuous 
Collinear 0.026 0.029 0.039 

Independent 0.029 0.033 0.041 

Discrete Independent 0.014 0.019 0.033 

n=50 

Mixed 
Collinear 0.015 0.016 0.042 

Independent 0.016 0.017 0.038 

Continuous 
Collinear 0.019 0.018 0.034 

Independent 0.015 0.019 0.030 

Discrete Independent 0.008 0.010 0.023 

n=200 

Mixed 
Collinear 0.293 0.314 0.052 

Independent 0.006 0.005 0.043 

Continuous 
Collinear 0.008 0.004 0.039 

Independent 0.007 0.005 0.035 

Discrete Independent 0.004 0.003 0.026 

n=500 

Mixed 
Collinear 0.008 0.002 0.000 

Independent 0.010 0.002 0.000 

Continuous 
Collinear 0.013 0.002 0.000 

Independent 0.013 0.002 0.000 

Discrete Independent 0.004 0.001 0.000 

(1) Each cell consists of 200 runs.  

 

 

  



663 

 

REFERENCES 

  

Agresti, A. (2002), Categorical Data Analysis, 2nd edition, John Wiley & Sons, Inc., Hoboken, 

New Jersey. 

Bain, L. J., and Engelhardt, M. (1992), Introduction to Probability and Mathematical Statistics, 

2nd edition, PWS-KENT publishing company, Boston, USA. 

Christensen, R. (1997), Log-Linear Models and Logistic Regression, 2nd edition, Springer-

Verlag, Inc., New York. 

Draper, N. R. and Smith, H. (1998), Applied Regression Analysis, 3rd edition, John Wiley & 

Sons, Inc., New York. 

El-Haik, B., and Al-Omar, R. (2006), Simulation-based lean six-sigma and design for six-sigma, 

John Wiley and Sons, Inc., Hoboken, New Jersey, USA. 

Greene, W. H. (1997), Econometric Analysis, 3rd edition, Prentice-Hall International, Inc., USA. 

Hamed, R., El Hefnawy, A., and Ramadan, M. (March 2009), “Logistic Regression Using Non-

Linear Goal Programming", the 21
th

 annual conference on Statistics and Modeling in the 

Human and Social Sciences, Faculty of Economic and Political Science, Cairo university. 

Hosmer, D. W. and Lemeshow, S. (2000), Applied Logistic Regression, 2nd edition, John Wiley 

& Sons, Inc., New York. 

Lau, K., Leung, P., and Tse, K. (1999), "A Mathematical Programming Approach to Clusterwise 

Regression Model and its Extensions", European Journal of Operational Research, Vol. 116, 

No. 3; 640-652. 

Luo, Z. (2005), Flexible Pavement Condition Model Using Clusterwise Regression and 

Mechanistic-Empirical Procedure for Fatigue Cracking Modeling, unpublished Ph.D. thesis, 

College of Engineering, The University of Toledo, Toledo, OHIO. 

Spath, H. (1979), "Algorithm 39: Clusterwise Linear Regression", Computing, Vol. 22; 367-373. 

Spath, H. (1981), "Correction to Algorithm 39: Clusterwise Linear Regression", Computing, Vol. 

26; 275. 

Spath, H. (1982), "Algorithm 48: A Fast Algorithm for Clusterwise Linear Regression", 

Computing, 29; 175-181. 

Spath, H. (1985), Cluster Dissection and Analysis, New York: Wiley. 

Xie, X. (2005), A Goodness-of-fit Test for Logistic Regression Models with Continuous 

Predictors, unpublished Ph.D. thesis, the Graduate College of the University of Iowa, Iowa, 

USA. 



664 

 

Proceedings of the Tenth Islamic Countries Conference on Statistical Sciences (ICCS-X), Volume II, 

The Islamic Countries Society of Statistical Sciences, Lahore: Pakistan, (2010): 664–675. 

 

A FAMILY OF ESTIMATORS FOR SINGLE AND TWO-PHASE 

SAMPLING USING TWO AUXILIARY ATTRIBUTES 

 

Muhammad Hanif
1
, Inam-ul-Haq

2
 and Munir Ahmad

3
 

1
 Lahore University of Management Sciences, Lahore, Pakistan 

E-mail: hanif@lums.edu.pk 
2, 3

National College of Business Administration & Economics, Lahore, Pakistan 

E-mail: 
2
inam-ul-haq786@hotmail.com, 

3
drmunir@ncbae.edu.pk 

 

ABSTRACT 

 

A general family of estimators has been proposed and general expression of mean square error of 

these estimators has been derived by Jhajj et al. (2006). In this paper we have suggested 

improved version of Jhajj et al. (2006) by using two auxiliary attributes, we have also suggested 

some new estimators. Mathematical comparisons of these estimators have been made. Empirical 

study has also been conducted to show that new estimators are more efficient. More over it is 

investigated numerically that full information cases are more efficient than partial and no 

information cases.  

 

1. INTRODUCTION 

 

Use of auxiliary information to increase the efficiency of estimators for population mean is an 

integral part of recently developed estimators. The use of auxiliary information in estimation 

process is as old as history of survey sampling. The first use of auxiliary information in survey 

sampling can be traced from the work of Neyman (1938). Generally the auxiliary variables are 

quantitative in nature but the use of qualitative auxiliary variables has been proposed in ratio, 

product and regression estimators by Naik and Gupta. (1996). A family of estimators using 

single auxiliary attribute has been introduced by Jhajj et al. (2006). 

In this paper we have developed a set of estimators which are improved form of Jhajj et al. 

(2006) and Shabbir and Gupta (2007). For this let  1 2
, ,

i i iy   be the ith sample point from a 

population of size N, where  1,2j j   is the value of jth auxiliary attribute. We suppose that the 

complete dichotomy is recorded for each attribute so that 1ij   if ith unit of population possesses 

jth attribute and j  = 0 otherwise. Let 
1

N

j ij
i

A


   and 
1

n

j ij
i

a


   be the total number of units in the 

population and sample respectively, possessing attribute j . Let 1

j jP N A  and 1

j jp n a
  be the 

corresponding proportion of units possessing attributes j . Let us define ye y Y   and 

j jj
e p P    with following properties:  

 
2 2( )y yE e S   where 1 1

n N
 

   , ( ) 0 ( )y j
E e E e  , 2 2( )

j j
E e S   , ( )y y pbj j j

E e e S S    , 

  121 2 1 2
E e e S S Q      and   

1

1

1

N

y i ij jj
j

S y Y P
N




   


.  
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Suppose further that  Pbj y yj j
S S S    be the point bi-serial correlation coefficient and 12Q  is the 

coefficient of association, where 121 1Q    . Let 
1

n  and 
2

n  be the size of first-phase and second-

phase sample respectively, so that 2 1n n  and  1j
p ,  2j

p  are proportion of units possessing 

attribute j  in first-phase and second-phase sample respectively. The mean of main variable of 

interest at second phase is denoted by 2y . Also 

22ye y Y  ,    1 1j
jj

e p P


  ,    2 2j
jj

e p P


    1,2j  ,   2

22y yE e S  , 
   

 
1 2

2
2

3j j j
E e e S     , 

   
  

2 2 1 2j j jy y pbjE e e e S S      , 
   

 
   

 
1 2 1 1 2 2 2 1 1 23 12E e e e e S S Q         

 
, 3 2 1    , 1 1

1 1n N
 

    and

1 1

2 2n N
 

  . 

 

2. SOME PREVIOUS ESTIMATORS BASED ON AUXILIARY ATTRIBUTES 
 

In this section we have reproduced some previous estimators available in literature.  

 

2.1 Single-Phase Sampling (Full Information Case) 

 

i) If information on a single auxiliary attribute τ1 is known then a family of estimator suggested 

by Jhajj et al. (2006) is given as  

 

   1(1) 1,T g y v ,                (2.1) 

 

where 
1 1 1

v p P  and  1,g y v  is a parametric function of y  and 1v  such that  ,1g Y Y


 , and 

satisfy certain regularity conditions. The mean square error of (2.1) is: 
 

      2 2

1 1 11 pb ySMSE T    ,              (2.2) 

 

where 2

1pb  is squared point bi-serial correlation coefficient. 

 

ii) An estimator suggested by Shabbir and Gupta (2007) for full information case is 
 

     1
2(1) 1 2 1 1 1

1

. ( 0)
P

t y d d P p p
p

                (2.3) 

 

The values of 1d and 2d  that minimizes  2(1)MSE t  are  

 

  
 

1 2

1

2 2
1

1

1
Pb y

d
Y S





  

 and 
 

 
2

1 1

2 2
1

11
1

Pb y P

PPb y S

C C
d

C








   
 

. 

 

The mean square error of 2(1)t  is  

 

   
 
 

2

2 2

2

1

2(1) 2

111

1
y

y

pb

pb

S

Y S
MSE t





 





.             (2.4)  
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2.2 Two-Phase Sampling (No Information Case) 

 

i) A family of estimator for two phase sampling by Jhajj et al. (2006) is  

  

   2 13(2) , dT g y v ,              (2.5) 

 

where    1 1 2 1 1d
v p p , such that  ,1g Y Y  . The mean square error of (2.5) is 

 

      2 3

2 2

13 2 pb ySMSE T      .              (2.6) 

 

ii) An estimator was also suggested by Shabbir and Gupta (2007) for no information is  

   2

1(1)

4(2) 1 2 1(1) 1(2) 1(2)
1(2)

. ( 0)
p

t y W W p p pp
    

            (2.7) 

 

The expressions for 
1

W and 
2

W  that minimizes  4(2)MSE t  are  

 

  
  2 21 2

2 3 1

1

1
ypb

W
Y S




   
 and 

 

 
1

1

1
2 2 2

2 3 1
1

Pb y P

PPb y

C C
W

C S

 

     

 . 

 

Then the mean square estimator of 4(2)t  is  

 

   
 
 

2 2

2 3 1

4(2) 2 2 2

2 3 11

pb y

pb y

S

Y S
MSE t



  


   
.             (2.8) 

 

3. A NEW ESTIMATORS FOR SINGLE AND TWO PHASE  

SAMPLING USING ONE ATTRIBUTE 

 

An approximate estimator suggested by Shabbir and Gupta (2007) was not defined at 1p = 0, 

therefore we are proposing a new exact estimator, which may be considered as an alternate 

suggested in Shabbir and Gupta (2007). This new approach has an advantage over estimator 

suggested in Shabbir and Gupta (2007), as it is defined for any value of sample proportion “ 1p ” 

and mean square error of proposed estimator is also exact because this new estimator do not 

contain any ratio. 

 

The estimator for full information case using single attribute is  

 

   5(1) 0 1 1 1t d y d p P     ,            (3.1) 

 

where 0d and 1d  are unknown constants to be determined? The mean square error of 5(1)t  will be  

 

     
1 1 1

2 2 2 2 2 2

5(1) 0 0 1 11 2y y PbMSE t d Y d S d S d S S 
      
 

.         (3.2) 
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Optimum value of 0d and 1d  which minimize  5(1)MSE t  are 

 

  
 

0 2 2 2

1

1

1 1 Pb yY S
d




  
 and 1

1

1

pbyS
d

S


  .  

 

Using the value of 0d and 1d  in (3.2) and on simplification we get 

 

   
 
 

2

2 2

2

1

5(1) 2

1

1

1 1

y

y

pb

pb

S

Y S
MSE t



 


  
,            (3.3) 

 

which is exact unlike suggested Shabbir and Gupta (2007). Another suggested estimator for no 

information case is  

 

   6(2) 0 2 1 1(2) 1(1)t W y W p p     ,            (3.4) 

 

where 0W  and 1W  are constants to be determined. The mean square error of 6(2)t  will be  

 

      11

2
2 2 2 2 2

0 0 2 3 1 16(2) 1
1 2y y PbMSE t W Y W S W S W S S 

 
    
       

       .        (3.5) 

 

The optimum value of 0W  and 1W , which minimize  6(2)MSE t  are 

 

  
  2 20 2

2 3 11

1

ypb Y S
W


  


 

 and 1
1

1

pbyS
W

S


  .  

 

Using the value of 0W  and 1W in (3.5) and on simplification we get. 

 

   
 
  2 2

2 2

2 3 1

6(2) 2

2 3 1
1

y

Pb y

Pb S

S
MSE t

Y 

  

   
 ,           (3.6) 

 

which is exact unlike the one suggested Shabbir and Gupta (2007). This may be considered as an 

alternative to the one suggested Shabbir and Gupta (2007). 

 

 

4. A NEW ESTIMATOR FOR FULL PARTIAL AND NO INFORMATION CASES 

USING TWO ATTRIBUTE 

 

In this section we will propose a new estimator for single-phase sampling for full information 

case also for two-phase sampling (partial and no information cases) using two auxiliary 

attributes. 
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4.1 A New Estimator for Single Phase Sampling Using Two Auxiliary Attributes (Full 

Information Case)  

 

In this section we are proposing a family of estimators for full information case by adding 

another attribute in estimator given by Jhajj et al. (2006). 

 

   7(1) 1 2, ,T g y v v ,             (4.1) 

 

where 1 2
1 2 1 2

1 2

, , 0, 0
p p

v v v v
P P

    , 1p , 2p  are sample proportions possessing attributes 1  and 2  

respectively.  1 2, ,g y v v  is the parametric function such that  ,1,1g Y Y  , and satisfying the 

point  1 2, ,y v v  to be in a bounded set in 3R  containing a point  ,1,1Y . The attributes 
1  and 2  are 

significantly correlated with main variable. We consider the following estimator of the family 

defined in equation (4.1) i.e. 

 

     7(1) 1 1 1 21 1vt y v     ,            (4.2) 

 

where 1 and 2 are constant and are to be determined. The mean square error is 

 

    1 2 1

17(1)

2 2

2 2 2
1 2 12 2

11 2

2y y Pb

S S S
MSE t S S

PP P

  

      



 

     2 1 2

22 1 2 12
2 1 2

2 2y Pb

S S S
S Q

P P P

   
      



.        (4.3) 

 

Optimum values of 1 and 2 are, 

 

  
 
 

1 121 2

2

121

1
1

Pb PbyPS Q
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 , 

 
 

2 122 1

2 2

122
1

y Pb PbP S Q

S Q

   
 


 .  

 

Using 1 and 2 in (4.3) we get 

 

     
1 2

2

.

2

7(1) 1
y ySMSE t
 

  ,            (4.4) 

 

where . 1 2y    is multiple bi-serial correlation coefficient. We are also proposing a regression type 

estimator for full information case using two auxiliary attributes i.e.  

 

     8(1) 0 1 1 1 2 2 2t y p P p P          ,           (4.5) 

 

where 0 , 1 and 2  are unknown constants to be determined. The mean square error of 8(1)t  will 

be, 
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1 2 12 2 2 1 2 1 1
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.    (4.6)  

 

Optimum value of 0 , 1 and 2  are  
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Using the value of 0 , 1 and 2  in (4.6) and on simplification we get,  
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 .           (4.7) 

 

4.2 A New Estimator for Single Phase Sampling Using Two Auxiliary Attributes (Partial 

and No Information Cases)  
 

In this section two cases will be discussed, one for partial information and other for no 

information. 

 

4.2.1 Partial Information Case 
 

We propose a family of estimators as  
 

   9(2) 1 2, , dT g y v v ,            (4.8) 

 

where 1(2) 2(2)

1 2 1 2

1 2(1)

, , 0, 0d d

p p
v v v v

P p
    , 1P  is known but 2P  is not known, where  1 2, , dg y v v  is 

parametric function such that  ,1,1g Y Y  , and satisfying condition mentioned for (4.1). We 

consider the following estimator of the family defined in equation (4.8) 

 

     9(2) 2 1 1 2 21 1dt y v v      ,            (4.9) 

 

where 1
 and 2

  are constants to be determined. The mean square error of 
9(2)

t  will be.  
 

  
1 1

2 2

11

2

2 2
9(2) 1 1 1

2y y Pb

S S

PP

MSE t S S
  

 
 

 
      
 
 

  

      
2

2 2 1 2

3 2 2 122

2 1 22

2

2 12
.2 2y Pb

S S S S

P P PP

YS Q
   



 
           
 

    (4.10) 
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The optimum values of 1
 and 2

 are  
 

  
 
 

1 12 3

2

2 3 121

2 1 2

1

y Pb PbPS Q

S Q

     
 

 
 , 

 
 

2 12

2

2 3 122

2 2 1

2

y Pb PbP S Q

S Q

   
 

 
 .  

 

Using the value of 1
 and 2

  in (4.10) and on simplification we get  
 

   
 

1 2 1 2

2 2

2 3 3 12

2 2

2 3 12

2

9(2)

2
1

Pb Pb Pb Pb

y

Q
S

Q
MSE t 

       
 

 

 
 

  

.       (4.11) 

 

Regression type estimator using two auxiliary attributes also has been suggested i.e. 
 

     210(2) 0 1 1(2) 1 2 2(2) 2(1)t y p P p p       
,        (4.12) 

 

where 0 , 1 , 2  are unknown constants to be determined . The mean square error of 10(2)t  will be. 
 

     
 

 
1 1 1

2 2 2 1 2
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2 2 2
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3 1 2
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2

1

2 2
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Y
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S
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    (4.13) 

 

The optimum value of 0 , 1 , 2  are 
 

  

 
1 2 1 2

2 2

2 3 3 12 2 2

2 2

2 3 12

0 ,

2
1

1

1
Pb Pb Pb Pb

y

Q
Y S
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1

1

2 12 31 2

2

2 3 12

1

y Pb PbPS Q

S Q

    

 
  , and 

 
 

2

2

2 122 1

2

2 3 12

2

y Pb PbP S Q

S Q

   

 
  .  

 

Using the value of 0 , 1 , 2  in (4.13) and on simplification we get. 
 

  
 

 

1 2 1 2

1 2 1 2

2 2

2 3 3 12

2

2 3 12

2 2

2 3 3 12

2

2 3 12

2

2

10(2)

2 2
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(
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Q

Q

Q

Q
Y S

S

MSE t



        


  

        


  



 

 
 
  


 
 
  

.       (4.14) 

 

4.2.2  No Information Case 

 

Like full information we propose a family of estimator for no information case, under same 

condition mentioned for (4.1), i.e.  

 

    11(2) 2 1 2, ,d dT g y v v  ,           (4.15) 
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where 1(2) 2(2)

1 2 1 2

1(1) 2(1)

, , 0, 0d d d d

p p
v v v v

P P
     and  2 1 2, ,d dg y v v  is parametric function such that

 ,1,1g Y Y


 . We consider the following estimator of the family defined in (4.15) 
 

     11(2) 2 1 1 2 21 1d dvt y v     ,         (4.16) 
 

The mean square error of 
11(2)
t  will be  

 

    1 2 1

111(2)

2 2

2 2 2
2 3 1 2 12 2

11 2

2y y Pb

S S S
MSE t S S

PP P

  


        
 

 

    2 1 2
2 1 2 1222 1 2

2 2 .y Pb

S S S
S Q

P P P


   




             (4.17) 

 

the optimum value 1 and 2  in (4.17) are same as derived for full information case, using the 

value of 1 and 2  in (4.17) and on simplification we get. 

 

      
1 2 1 21

2 2 2

11(2) 2 . .1 y y yMSE t S         .         (4.18) 

 

We also propose regression type estimator for no information case, i.e.  

 

     *

12(2) 0 2 1 1(2) 1(1) 2 2(2) 2(1)t y p p p p        
,        (4.19) 

 

where *

0 , 1 and 2  are constants to be determined. The mean square error of 12(2)t  will be, 

 

        1 2 1 1

2 2 1 2

2 2 2 2
2 2 1 2 1* 2 * 2 2
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.   (4.20) 

 

Optimum values of *

0 , is 
  

1 2 1 2

2 2

*

0 2 2

2 . 1 .1

1

1
yy y Y S



        
 


 

while optimum values 1 and 2  in 

(5.13) are same as given in full information case.  Using the value of *

0 , 1 and 2  in (5.13) and 

on simplification we get. 

 

   
  
  

1 2 1 2

1 2 1 2

2 2

2 2

2 . 1 .

12(2) 2 2

2 . 1 .

2
1

11
y

y y

y y

y

Y S

S
MSE t



   

   

     

     



.        (4.21) 

 

There could be number of estimators of families proposed in (4.1), (4.8) and (4.15). Some 

estimators of family proposed in (4.1) are 

 i)    1 1 1 21 1y v v      

 ii) 1 2
1 2yV V
  , 

 iii)    1 1 2 21 1V V
y e
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 iv)      1 21 11 2
1 2

V V
y V e V e

 
    

 v)  12 21
1

V
yV e

    

 vi)    1 11 1 2 21 2
1 2

2

V Vy
V V e

    
 

 
, 

 vii)    3 4
1 1 2 21 1y V V

 
     , 

 viii)    3
1 1 2 21 1V Vy


      , 

 ix)  
1

12 22
1 1 2

1 2

,
Vy

V
k k

k k e



 




 
 
  

 

 x)      1 11 1 2 21
V V

y k e k e
     

  
,  

 

The mean square error of all these estimators have been derived and found same for all ten 

estimators. This is also there for partial and no information case. It can be easily verified that 

   7(1) 1(1)MSE t MSE t  also    8(1) 2(1)MSE t MSE t . It shows that 7(1)t and 8(1)t  are more efficient than 

1(1)
t and 2(1)t  respectively. Similarly it can be shown that    11(2) 3(2)MSE t MSE t  also 

   12(2) 4(2)MSE t MSE t , which shows that 
11(2)
t  and 

12(2)
t  are more efficient than 

3(2)
t  and 4(2)t  

respectively.  

 

5. EMPIRICAL STUDY COMMENTS AND CONCLUSION 
 

Twelve populations are taken from Government of Pakistan (1998). It is shown empirically in 

table-2 that proposed estimator 8(1)t  out perform other competing estimators as it has maximum 

efficiency in almost all the populations. Also 
12(2)t  performs best in almost all the populations. 

We conclude that 8(1)t  and 12(2)t  are more efficient than the other estimators in single phase and 

two-phase sampling. It is further observed full information case is always more efficient than no 

information case. 

The optimum value of 1  and 2  involve some population parameters, which are assumed to 

be known for the efficient use of proposed family 7(1)T . In case these parameters are unknown, 

these can be estimated from the sample. If we follow approach of Srivastava and Jhajj (1983), 

the estimator of proposed family, 7(1)T  will have the same minimum mean square, if we replace 

the unknown value of parameters involved in optimum value of 1  and 2  with their estimators. 

Similar is the case for other proposed estimators and families.  

Proposed estimator  10 1
t  is recommended to estimate the population mean for full 

information case as  10 1
t  outperform all the existing estimators for full information. Similarly 

 12 2
t  is recommended to estimate the population mean for no information case as  12 2

t  

outperform all the existing estimators for no information. 

It is also recommended that full information should always be preferred if possible, otherwise 

partial information are the best choice, no information case are recommended when we have no 

other choice. It can easily observed from table 3 that the estimators based on full information 

case are always more efficient than estimators based on partial and no information. It can also be 
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observed that estimators based on partial information case are always more efficient than 

estimators based no information. 

 
 

APPENDIX 

Table-1: Description of Populations and Variables 

Pop 

# 
Description Main Variable 

Attribute-I (τ1) 

is present if 

Attribute-II(τ2)  

is present if 

1 
District-wise area and production of 

Vegetables for year 1995-96 

Production of Vegetables  

(In tones) 

 Districts of 

N.W.F.P (including 

Fata Areas ) 

Area of Districts 

less than  

500 hectors. 

2 
District-wise area and production of 

Vegetables for year 1996-97 

Production of Vegetable 

(In tones) 
Districts of Punjab 

Area of Districts 

less than  

401 hectors. 

3 
District-wise area and production of 

Vegetables for year 1997-98 

Production of Vegetables  

(In tones) 
Districts of Punjab 

Area of Districts 

greater than  

1000 hectors. 

4 
District-wise area and production of 

all Fruits for year 1995-96 

Production of all Fruits  

(In tones) 

Area of Districts 

greater than 1000 

hectares 

Districts of 

Punjab 

5 
District-wise area and production of 

all Fruits for year 1996-97 

Production of all Fruits  

(In tones) 
Districts of Sind 

Area of Districts 

less than  

1000 hectors. 

6 
District-wise area and production of 

all Fruits for year 1997-98 

Production of all Fruits  

(In tones) 

 Districts of 

N.W.F.P (including 

Fata Areas ) 

Area of Districts 

less than  

500 hectors. 

7 
District-wise area and production of 

Wheat for year 1995-96 

Production of Wheat  

(In tones) 

Area of Districts 

greater than 30 

hectors. 

Districts of 

Punjab 

8 
District-wise area and production of 

Wheat for year 1996-97 

Production of Wheat  

(In tones) 
Districts of Punjab 

Area of Districts 

greater than  

35 hectors. 

9 
District-wise area and production of 

Wheat for year 1997-98 

Production of Wheat  

(In tones) 

 Districts of 

N.W.F.P (including 

Fata Areas ) 

Area of Districts 

greater than  

25 hectors. 

10 

District-wise area and production of 

Onion for year 1995-96 

Production of Onions  

(In tones) 

Area of Districts 

greater than 40 

hectors. 

Districts of 

N.W.F.P 

(including Fata 

Areas )  

11 

District-wise area and production of 

Onion for year 1996-97 

Production of Onions  

(In tones) 

Area of Districts 

greater than 50 

hectors. 

 Districts of 

N.W.F.P 

(including ata 

Areas )  

12 
District-wise area and production of 

Onion for year 1997-98 

Production of Onions  

(In tones) 
Districts of Punjab 

Area of Districts 

greater than  

60 hectors. 
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Table 2 Relative Efficiency of Various Estimators 

Pop # 

Single-Phase Sampling 

(Full information case) 

Two-Phase Sampling 

(No information case) 

y  1(1)T  2(1)t  7(1)t  8(1)t  3(2)T  4(2)t  11(2)t  12(2)t  

1 100 108.77 120.10 118.20 129.53 104.62 115.94 109.20 120.52 

2 100 142.25 153.36 149.52 160.63 119.40 130.50 122.12 133.23 

3 100 142.03 152.92 143.39 154.27 119.31 130.20 119.84 130.72 

4 100 122.30 134.59 124.56 136.84 111.08 123.37 112.09 124.375 

5 100 102.49 114.96 126.02 138.34 101.11 113.58 112.73 125.20 

6 100 111.41 123.65 114.58 126.82 105.93 118.17 107.48 119.72 

7 100 146.61 155.30 239.88 248.56 115.15 123.83 140.33 149.01 

8 100 225.50 233.66 268.09 276.28 147.90 156.08 157.466 165.65 

9 100 125.40 132.80 186.98 194.42 113.36 120.80 137.125 144357 

10 100 105.90 137.40 107.13 138.63 103.40 134.90 104.10 135.60 

11 100 107.07 136.09 107.76 136.96 104.04 133.14 104.43 133.63 

12 100 101.80 129.20 109.90 137.30 101.05 128.45 105.60 133.00 
 

 

 
Table 3 Comparison of full, partial and no information for Proposed Generalized Estimators ( 7(1)t , 9(2)t , 11(2)t ) 

of Jhajj et al. (2006) and Generalized 

New estimators ( 8(1)t , 10(2)t , 12(2)t ) (Relative efficiency) 

Pop 
# 

Generalized Estimators  

( 7(1)t , 9(2)t , 11(2)t ) of Jhajj et al. (2006) 

Generalized New estimators 

( 8(1)t , 10(2)t , 12(2)t ) 

Relative efficiency of 
full & partial information 

to no information 

Relative 
efficiency 

 of full 
information 

to partial 
information 

Relative efficiency of 
full & partial information 

to no information 

Relative 
efficiency 

of full 
information 

to partial 
information 

7(1)t  

(Full 
information) 

9(2)t  

(Partial 
information) 

7(1)t  

(Full 
information) 

8(1)t  

(Full 
information) 

10(2)t  

(Partial 
information) 

12(2)t  

(Full 
information) 

1 108.2466 103.5194 104.56646 107.4748 103.192 104.1504 

2 122.4347 116.9979 104.64689 120.5643 115.5812 104.3114 

3 119.6564 118.7813 100.73673 118.0197 117.2217 100.6808 

4 111.129 109.8239 101.18835 110.0295 109.008 100.9371 

5 111.7863 100.9679 110.71469 110.6128 100.9286 109.5951 

6 106.6035 104.9007 101.62329 105.9285 104.2866 101.5745 

7 170.9397 108.7959 157.11966 166.8066 108.2819 154.0484 

8 170.2505 144.9148 117.48314 166.7876 142.6934 116.8853 

9 136.3569 111.3599 122.44703 134.4831 110.7719 121.4053 

10 102.9238 102.5836 100.3317 102.2447 101.9841 100.2555 

11 103.192 102.7445 100.43559 102.4953 102.1453 100.3426 

12 104.0688 100.7416 103.30275 103.2306 100.5894 102.6257 
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ABSTRACT 

 

A general family of estimators has been proposed and general expression of mean square error of 

these estimators has been derived by Jhajj et al. (2006). In this paper we have proposed a 

generalized family of estimators based on the information of “k” auxiliary attributes. Three 

different cases have been discussed that include the full, partial and no information cases. The 

family has been proposed for single-phase sampling in case of full information and for two-phase 

sampling in case of partial and no information cases. The expression for mean square error has 

been derived in all three cases. It is found that the proposed family has smaller mean square error 

than given by Jhajj et al. (2006). 

 

1. INTRODUCTION 

 

A family of estimators using single auxiliary attribute has been introduced by Jhajj et al. (2006). 

In this paper, we have proposed a new class of estimator by using information on “k” auxiliary 

attributes. The new class of estimators is a general extension of the class of estimators proposed 

by Jhajj et al. (2006). For this let 1 2, , )( ,....
i i i iky     be the ith sample point from a population of size 

N, where τj (j=1,2,…,k) is the value of jth auxiliary attribute. We suppose that the complete 

dichotomy is recorded for each attribute so that 1ij   if ith unit of population possesses jth 

attribute, τj, and 0 otherwise. Let 
1

j

N

i
ijA



    and 
1

j

n

i
ija



    be the total number of units in the 

population and sample respectively, possessing attribute j . Let 1

j jP N A


  and 1

j jp n a


  be the 

corresponding proportion of units possessing attributes j . Let us define ye y Y   and 
j j je p P    

with following properties: 

 
2 2( )y yE e S  , 2 2( )

j j
E e S   , ( )

j j jy pbE e e S Sy    ,   &
j j jE e e S S Q j

         , ( ) 0 ( )
jyE e E e 

,where 1 1
n N
 

     

and   
1

1

1j

N

i ij j
j

y
N

S y Y P


 


   .  
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Suppose further that  
j jPbj y yS S S   be the point bi-serial correlation coefficient and 

j
Q



 1 1jQ     is coefficient of association. Let 1n  and 2n  be the size of first-phase and second-

phase sample respectively, so that 2 1n n  and  1j
p ,  2j

p  are proportion of units possessing 

attribute τj in first-phase and second-phase sample respectively. The mean of main variable of 

interest at second phase is denoted by 
2

y . Also 
2 2ye y Y  ,    1 1j

jj
Pe p


  ,    2 2 j

j j
Pe p


  

(j=1,2…k), 3 2 1    . We also define following expectations: 
 

 
2

2
2y yE e S  ,

    1 2

2
2

3 jj j
E e e S     ,

     2 2 1
3 jj j

y y pbjE e e e S S      , 

           
1 22 1 2 1

/ 1 2 2
3 . ...,

j kj j
j y y y yE e e e e S S Q S

 


            

       
  

         

 
1 21 1 1

2 2
. ...

/ 1
my yy y S  


       ,  

22 2 1 2

1 2/ 2
. ...m m k yy y y S

 


        ,  

 

where 
1 2

2
. ... ky     is squared multiple bi-serial correlation coefficient. These notations will be used 

in developing the mean square error of the new family of estimators. 

 

2. SOME PREVIOUS ESTIMATORS BASED ON AUXILIARY ATTRIBUTES 

 

2.1 Single-Phase Sampling (Full Information Case) 

 

i) If information on a single auxiliary attribute τ1 is known then a family of estimator suggested 

by Jhajj et al. (2006) is given as  

 

   1(1) 1,T g y v ,             (2.1) 

 

where 1 1 1v p P  and  1,g y v  is a parametric function of y  and 1v  such  that  ,1g Y Y  , and 

satisfy certain regularity conditions. The mean square error of (2.1) is: 

 

      2 2
11 1

1 pb yMSE T S  ,           (2.2) 

 

where 2
1pb  is squared point bi-serial correlation coefficient. 

 

2.2 Two-Phase Sampling (No Information Case) 

 

A family of estimator for two phase sampling by Jhajj et al. (2006) is given as  

 

               2 13(2) , dT g y v ,             (2.3) 

 

where    1 1 2 1 1dv p p ,   such that  ,1g Y Y  . The mean square error of (2.3) is: 

 

      2 3

2 2
13 2 pb ySMSE T    .                       (2.4) 



678 

 

                                                                                     

In the following section we develop the general family of estimators by using information on “k” 

auxiliary attributes. 

3. NEW FAMILY OF ESTIMATORS 

 

3.1 Generalized Estimator using “k” Auxiliary Attributes for Full Information Case 

 

Suppose that population proportion jP  is known for all the auxiliary attributes. Using this full 

information we propose a general family of estimators as: 

 

   3(1) 1 2 ,.........,, , kT g y v v v ,           (3.1) 

 

where , 0j j j jv p P v   and jp  is the sample proportions of jth attributes. Also  1 2
,...,, ,

k
g y v v v  is 

the parametric function such that  1 2
,....,, ,

k
Yg y v v v  , and the point  1 2 ,....,, , ky v v v  are to be in a 

bounded set in kR  containing a point  ,1,1,...,1Y . The attributes j  are significantly correlated with 

main variable. Some families of estimators under above conditions may be formulated as,  

 

 i)    3(1)
1

/ /α v 1 φ1
k

j
j v jy y yt



        ,         (3.2) 

 

 ii)      2

1 2
1

4(1) ... k

k
t y v v v   

  ,           (3.3) 

 

where    1 1
, , 1j jk x k x

v v v              and 1  is a vector of one’s. Using yy Y e   in (3.2), 

squaring and applying expectation we have:  

 

    / /
3(1)

2
2y ytMSE S       

 
  ,          (3.4) 

 

where 1 1n N    ,  /
φφE    is the covariance matrix of φ  and  φ y yE e    is the vector of 

covariance between Y and φ . Partially differentiating (3.4) with respect to α  and equating the 

derivative to zero we have 
 

  1α y

    .             (3.5) 

 

Using (3.5) in (3.4) we have, 
 

       2
3 1 1 2

2
. ...1 ykyMSE t S     ,           (3.6) 

 

where 
1 2

2
. ... ky     is defined earlier. Comparing (3.6) with (2.2) we can readily see that  

 

       3 1 1 1
MSE t MSE t . 

 

Using yy Y e   in (3.3), squaring and applying expectation we have:  
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   4(1)
2 / 2 /

τα α 2 αy yt Y YMSE S 
  
 

   ,          (3.7) 

 

Partially differentiating (3.7) with respect to α  and equating the derivative to zero we have,  
 

  11
α y

Y


     .             (3.8) 

 

Using (3.8) in (3.7) we have, 

 

      1 2

2
4 1

2
. ...1

k yyMSE t S     ,           (3.9) 

 

Some special cases of family formulated in (3.3) can be constructed easily as shown below. 

 

(i) Generalized Ratio Estimator for Single-Phase Sampling for Full Information Case Using 

“K” Auxiliary Attributes 

 

If we put 1 2 3... 1k       in (3.3) we get generalized ratio estimator i.e.  

 

  1 2

1 2
5(1) ..... k

k

PP P

p p p
yt

   
   

    
    

 ,         (3.10) 

 

and by putting   1
1

k
    in (3.7) we get mean square error of 5(1)t  i.e.  

 

   5(1)
1 1 1

2 2 2 2 2
k k k

Pbj
j j j

y y jj j j
MSE t C C C C C C QY

  
    


 
 
 

          (3.11) 

 

(ii) Generalized Product Estimator for Single-Phase Sampling for Full Information Case 

Using “K” Auxiliary Attributes 

 

If we put 1 2 3... 1k      in (3.3) we get generalized product estimator i.e. 
 

  1 2

1 2
6(1) ..... k

k

pp p
y

P P P
t

   
   

    
    

,         (3.12) 

 

and by putting  
1

1
k

   in (3.7) we get mean square error of 6(1)t  i.e.  
 

   6(1)

2

1 1 1

2 2 2 2
k k k

y Pbj
j j j

y jj j j
MSE t C C C C C C QY

  
    


 
 
 

      .         (3.13) 
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3.2 Generalized Estimator Using “k” Auxiliary Attributes for No Information Case 

 

We propose a general family of estimators for two-phase sampling when information of auxiliary 

attributes is not known for the population. We propose the following general family of 

estimators: 
 

   7(2) 2 1 2, , ,....,d d kdT g v v vy ,         (3.14) 

where ;(2) (1) 0jd jdp pj jv v  . Under the conditions; stated for (3.1) the following families of 

estimators may be formulated as,  
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 ii)          1 2
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          (3.16) 

 

where φ v 1d d  . Now, using 
22 yy Y e   in (3.15) we have 
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/
7 2

α φy dt Y e   . 

 

Squaring and applying expectation we have: 

 

        2 / /
2 2 1 2 17 2

α α 2 α ;y yMSE t S                 (3.17) 

 

The optimum value of α  is same as derived for full information case in (3.5). Using (3.5) in 

(3.17) we have,  
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where 
1 2

2
. ... ky     is defined earlier. Using 

22 yy Y e   in (3.16) and simplifying we have,  

 

      2

/
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α φy dt Y e Y   . 

 

Squaring and applying expectation we have: 

 

       / /
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2
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2
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        (3.19) 

 

The optimum value of α  is same as derived for full information case in (3.8). Using (3.8) in 

(3.19) we have,  

 

       2 18 2 1 2 1 2

22 2
. ... . ...1

k k yy yMSE t S          ,       (3.20) 

 

Some special cases of family formulated in (3.16) can be constructed easily as shown below. 
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(i) Generalized Ratio Estimator for Two-Phase Sampling for No Information Case Using 

“K” Auxiliary Attributes 

 

If we put 1 2 3... 1k          in (3.16) we get generalized ratio estimator i.e. 
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,        (3.21) 

 

and by putting   1
1

k
    in (3.19) we get mean square error of 9(2)t  i.e. 
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              (3.22) 

 

(ii) Generalized Product Estimator for Two-Phase Sampling for No Information Case 

Using “K” Auxiliary Attributes 

 

If we put 1 2 3... 1k        in (3.16) we get generalized product estimator i.e. 
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and by putting  
1

1
k

   in (3.19) we get mean square error of 10(2)t  i.e.  
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3.3 Generalized Estimator for “k” Auxiliary Attributes (With “m” known and “m<k”) for 

Partial Information Case 

 

Suppose that population proportion Pj  are known for j= (1, 2…m) auxiliary attributes and the 

population proportion Pj  is unknown for j= (m+1 m+2…k) attributes.  Using such partial 

information we propose following general family of estimators: 

 

  ,211(2) ( 1) ( 2)1 2, , .... , , ,...,m m m kT g y v v v v v v  ,         (3.25) 

 

where , ,(1) (2) (1)1, 2 1, 2 &( ... ) ( ... ); , 0j j jdp P p pj j j j m mjj m j kv v v v     . Under the conditions; 

stated for (3.1) the following families of estimators may be formulated as, 
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Squaring and applying expectation we have: 

 

         
1 1 2 2

2 / / / /
2 1 1 1 1 2 1 2 2 211 2

α α 2α α α 2α ;y y yMSE t S    
          

       (3.28) 

 

Partially differentiating (3.28) w.r.t. 1α  and 2α ; equating the derivatives to zero and solving we 

have the following optimum values of 1α  and 2α , 
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Using (3.29) and (3.30) in (3.28), the minimum mean square error of  11 2t  will be 
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where 
1 2

2
. ...m m ky      and 

1 2

2
. ... my     is the squared multiple bi-serial correlation coefficient. 

 

Using 
2

2 y
y Y e   in (3.27) and simplifying we have,   2
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Squaring and applying expectation we have: 
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Partially differentiating (3.32) w.r.t. 1α  and 2α ; equating the derivatives to zero and solving we 

have the following optimum values of 1α  and 2α : 
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Using (3.33) and (3.34) in (3.32), the minimum mean square error of  12 2t  will be 
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Some special cases of family formulated in (3.27) can be constructed easily as shown below. 

 

(i) Generalized Ratio Estimator for Two-Phase Sampling for partial Information Case 

Using “K” Auxiliary Attributes (With “m” known and “m<k”) 

 

If we put 1 2 1 2... ... 1m m k           in (3.27) we get generalized ratio estimator i.e. 
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and by putting  
11 1

m
    and    12 1

k m 
    in (3.32) we get mean square error of 13(2)t i.e. 
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(ii) Generalized Product Estimator for Two-Phase Sampling for partial Information Case 

Using “K” Auxiliary Attributes (With “m” known and “m<k”) 
    

If we put 1 2 1 2... ... 1m m k           in (3.27), we get generalized product estimator i.e. 
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and by putting  
11 1

m
   and    12 1 k m 

    in (3.32) we get mean square error of 14(2)t  i.e.  
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4. COMMENTS AND CONCLUSION 

 

The information on k auxiliary attributes has been utilized to develop the generalized family of 

estimators for single and two phase sampling. There could be number of families of estimators 

for general families proposed in (3.1), (3.14) and (3.25), the special members have been given in 

(3.2), (3.3), (3.15), (3.16), (3.26) and (3.27). The expression for mean square error of the 

resulting estimators has been given in (3.5), (3.11) and (3.15). It can be easily seen that the mean 

square errors given in (3.6), (3.9), (3.18), (3.20), (3.31) and (3.35) are smaller as compared with 

the expression given by Jhajj et al. (2006). The optimum value of j  involve some population 

parameters, which are assumed to be known for the efficient use of proposed families 3(1)T , 7(2)T  

and 11(2)T . In case these parameters are unknown, these can be estimated from the sample. If we 

follow approach of  Srivastava and Jhajj (1983), the estimator of proposed families 3(1)T , 7(2)T  and 

11(2)T  will have the same minimum mean square, if we replace the unknown value of parameters 

involved in optimum value of j  with their consistent estimators 
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ABSTRACT 

Identification of one or more aberrant variables poses a persistent problem in interpreting the out 

of control signal in a multivariate control chart. The limitations of the available multivariate 

control charts plus the various level of interdependency between variables and mean shifts make 

the task even more difficult. This paper studies further the impact of these two factors on the 

diagnostic methods of multivariate processes. A simulation approach was taken to investigate the 

effects of various mean shifts and correlations structure. A few existing methods are reviewed 

and their performances are compared in terms of the percentage of detection and correct 

identification. These methods are compared with a novel proposal for identification and 

interpretation of aberrancy. 

 

Keywords: Aberrant variable, multivariate control chart, diagnostic methods, out-of-control 

signal 

 

1. INTRODUCTION 

 

One of the most important tools in quality control is quality control chart. Since, many processes 

involve two or more quality characteristics or variables, multivariate control charts have become 

a popular tool in Statistical Process Control for monitoring purposes as well as for identifying the 

variables which are responsible for the out of control signals. In this study they are referred to as 

aberrant variables.  

Nevertheless, as stated by Runger and Alt (1996), multivariate statistical process control and 

the use of multivariate control charts in particular, has one significant practical disadvantage that 

is the difficulty to determine which of the monitored variables is responsible for the out-of-

control signal. Hayter and Tsui (1994) stated that the procedure for multivariate control problem 

must satisfy three conditions which are the ability to control the overall family wise error rate at 

the nominal level α, providing a simple mechanism in determining the variables responsible for 

the out-of-control signal and the ability to identify the magnitude of the mean change for the out-

of-control variable. Jackson (1991) also stated that any multivariate process control procedure 

should fulfil four conditions. Firstly, the procedure must be able to tell whether the process is in 

control or not. Secondly, it must have a specification of the overall probability for the event 

„Procedure diagnoses an out-of-control state errorneously‟. Thirdly, it must take into account the 

relationship among the variables involved and finally, the procedure must be able to identify the 

cause of the problem. The second condition in Hayter and Tsui (1994) and the third and fourth 

condition proposed by Jackson (1991), will be the focus of our discussion in this paper. 

mailto:stp08sm@sheffield.ac.uk
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Jackson (1980,1981 & 1985) and MacGregor and Kourti (1995) have discussed in detail the 

approach of using principal component analysis  in multivariate quality control.  Since the 

principal components (or latent variables) are uncorrelated, they are often interpreted as 

measurements of distinct characteristics of the process (Runger and Alt, 1996). Maravelakis et al. 

(2002) also used principal component analysis to calculate a ratio for each variable in every 

observation in order to determine the contribution of every single variable to every signal 

produced by the multivariate control chart. The drawback of this approach is that sometimes, 

though rarely, the principal components do not provide meaningful information on the variables. 

It will definitely affect the interpretation of the principal components themselves and any 

calculation based on the principal components would be meaningless. Furthermore, as stated by 

Runger, Alt and Montgomery (1996), if a latent variable is difficult to interpret, then it is 

difficult to translate an unusual value for a latent variable into corrective action. 

Identifying the aberrant variables can also be done by performing individual t-tests on each 

variable (Alt, 1985) but a  t-test for zero means could find neither variable unusual. Doganaksoy, 

Faltin and Tucker (1991) also used a similar approach where the ranking of the univariate t 

statistic will be obtained to determine which variable is most likely to have changed. Another 

popular approach is by decomposing the T
2
 statistics discussed by Murphy (1987), Chua and 

Montgomery (1992),  Mason, Tracy and Young (1995) and Tracy, Young and Mason (1992). 

Computations or decomposition of the T
2 

statistics from some or all of the subsets of variables is 

used to assess the contributions in the signal. Hawkins (1991) also recommended the approach to 

detect a shift of the process mean in the direction of one of the measured variables. 

All the methods discussed in the previous section are heavily dependent on the out of control 

signal produced by the Hotelling‟s (1947) multivariate control chart. Suppose that one has p1 

random vectors X1, X2, …, Xp, and each of these vectors representing the p quality 

characteristics or variables either as individual observations or mean vectors. It is always 

assumed that Xi, i=1,2,…,p are independent and follow multivariate normal distribution and to 

be monitored and observed over time.  For simplicity, one always assumes that each of the 

random vectors has the known covariance matrix,  and the in-control process mean vector  

µ=(0,0,...,0). Hotelling‟s multivariate control chart is used to detect shifts over time from this in-

control vector. An out of control signal is produced from a statistically significant shift in the 

mean vector as soon as; 
 

                                                
2

,

1'2

 piii XX  

                                                      (1) 
 

where
2

p,  is the specified upper control limit (UCL) and α represents the level of significance of 

the hypothesis tests (Ryan, 2000). 

 

2. INTERPRETATION METHODS OF OUT OF CONTROL SIGNAL 

 

Diagnostic Method 1 

Doganaksoy, Faltin and Tucker (1991) proposed a diagnostic method by ranking the univariate t-

statistics. This approach will calculate the univariate t-statistics for each variable; 
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with sii is the variance of a variable and nnew  and nref is the sample size of the tested variable and 

the size of a sample from where the variance was obtained. Kind will be calculated by the 

following formula  
 

    11;2 1  ntTK ind                                                              (3) 

 

where T(t;n1-1) obtained from the cumulative distribution function of the t distribution with n1-1 

degrees of freedom. The aberrant variable is identified by looking at the Kind value. The variable 

with the highest Kind value is the most likely the one that has changed in the process. 

 

Diagnostic Method 2 

Maravelakis et al. (2002), has proposed two methods in identifying the aberrant variable(s) that 

caused the out-of control signal in multivariate control chart. Both methods need to perform the 

principal components analysis in prior of the computation of the ratio(s) for every variable for 

each observation in the data. The first method is used when the values of correlations in variance 

covariance matrix are all positive. The formula used to calculate the ratio for a given variable is: 

 

  
 

k1 k2 kd ki

ki

1i 2i di

+ + ... +
=

+ + ... +

u u u x
r

Y Y Y
                                  (4) 

 

where u‟s are the values in the first principal component, kix is the  i-th observation‟s value of 

variable kX , jiY  is the score of the i-th vector of observations in the j-th principal component or 

 

                                                   
ji ik 1i 2k 2i dk di

= + + ... +Y u x u x u x                                             (5) 

 

with j=1,2,…,d  and d is the number of significant principal components from the analysis. 

Maravelakis et al. (2002) relied on the Average Root method (Jackson, 1990) in determining the 

number of principal component where only the first principal component is considered in the 

ratio calculation based on the fact that the first principal component contains the most 

information of the data. So, the ratio for variable-k in observation –i will be 

 

      
 

i1

ki1k

Y

x
rki


                                                                    (6) 

 

where ki is the first principal component value for the first variable, kix  is the i-th observation 

for variable-k and iY1 is the score of the i-th vector of observations in the j-th principal 

component. 

Maravelakis et al. (2002) has proposed a different way of calculating the ratios for mixed 

values in covariance matrix. The denominator of (4) is calculated by the in-control mean vector 
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and not by the observation vector, Xi. Maravelakis et al. (2002) has proposed to use the percentile 

of ( ) and (1-) from the normal probability distribution as the control limits of the ratios with 

 is the significant level of the test. Whilst, the bivariate integral normal distribution proposed by 

Hinkley(1969) is used to determine the control limits for the ratios with mixed sign values of 

covariance matrix.  

In this study, the proposed approach for the mixed values in covariance matrix is not 

followed and the ratios will not be plotted within their control limits in order to identify the 

aberrant variables. Since the referenced mean vector is 0‟s, the ratio will obviously be indefinite. 

For this reason, this study used equation (6) to calculate the ratios regardless the type of the 

variance and covariance matrix. As the ratio clearly representing the contribution of variable-k in 

observation-i, this study tried to adopt the approach of  Doganaksoy, Faltin and Tucker (1996) by 

ranking the contribution of each variable for every observation. The ratios are treated as the 

weight of a variable in an observation. The higher the weight of the variable, the most likely it 

was the aberrant one. Instead of studying whether the ratios are within the control limits, we are 

now ranking the ratio of each variable based on its contribution in every observation. 

 

Diagnostic method 3  

This is an extension of the method proposed by Doganaksoy, Faltin and Tucker (1991) which is 

to be used together with the Kind discussed in the first diagnostic method. Another value, KBonf , 

is calculated for every variable, 
 

                                           KBonf-k = 
p

1)K(p sim 
                                                                     (7) 

 

where p is the number of variables and Ksim as stated in Doganaksoy, Faltin and Tucker (1991) 

“represents a trade off between the power of the intervals to identify attributes which have truly 

changed, versus the likelihood of misidentifying an attribute as having changed when it in fact 

did not”. The value of Ksim is fixed prior to the analysis and lies between 0 and 1. 

Doganaksoy,Faltin and Tucker(1991) have discussed in detail how to select the best Ksim. The 

aberrant variables can be identified by comparing the values of the Kind and KBonf.  The variable 

with it‟s Kind > KBonf is classified as being the one most likely to have changed. 

 

Correct Identification 

The correct identification of the diagnostic method has been done before by Das and Prakash 

(2007). In this study, the correct identification refers to the number of time the deviated 

variable(s) detected as the most likely to have changed from all of the observations simulated 

from the deviated mean vectors. 

 

3. RESULTS 

 

One thousand observations have been simulated from a multivariate normal distribution for a 

particular mean vector and variance and covariance matrix. The covariance matrices from 

Doganaksoy, Faltin and Tucker (1996) were used in the simulation as well as some of the mean 

vectors in their illustrations. This study also extends the selection of the mean vectors to take into 

account the impact of the different signs and different allocation of the deviated value(s) from 

the origin, 0, in the mean vector. 
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Table 1: The percentage of out-of-control signals and correct identification with 1 variable 

deviates from origin with all positive signs of covariance matrix. 

Mean vector 

% of Out-of-

Control 

Signals 

% of Correct Identification 

 

Method 1 Method 2 Method3  

[2,0,0,0] 83.3 77.8 74.0 51.7 

[0,2,0,0] 86.1 79.5  73.6 50.7 

[0,0,2,0] 60.7 78.8  70.5 48.5 

[0,0,0,2] 58.0 80.1  66.8 53.5 

 

Table 2: The percentage of out-of-control signals and correct identification with 1 variable 

deviates from origin with mixed signs of covariance matrix. 

Mean vector 

% of Out-of-

Control 

Signals 

% of Correct Identification 

 

Method 1 Method 2 Method 3 

[2,0,0,0] 98.8 75.2 67.0 48.8 

[0,2,0,0] 98.5 74.7 68.7 46.9 

[0,0,2,0] 98.0 77.8 49.9 52.5 

[0,0,0,2] 99.3 76.6 81.5 51.6 

 

The multivariate Hotelling‟s control chart has detected higher percentages of out-of-control 

signals from the datasets with mixed signs covariance matrix. Table 1 shows that method 1 has 

higher percentages of correct identification compared to method 2. Table 2 also shows that 

method 1 generally has  higher percentages of correct identification.  Method 3 mostly gives the 

lowest percentages for all cases. 

 

Table 3: The percentage of out-of-control signals and correct identification with 2 variables 

deviate in the same direction from origin with all positive signs of covariance matrix. 

Mean vector 

% of Out-of-

Control 

Signals 

% of Correct Identification 

 

Method 1 Method 2 Method 3 

[2,2,0,0] 62.9 93.0  89.1 51.2 

[2,0,2,0] 98.8 88.2  89.2 51.2 

[2,0,0,2] 84.0 87.5  87.4 52.6 

[0,2,2,0] 82.8 89.1  89.1 49.6 

[0,2,0,2] 99.3 88.6  87.4 52.1 

[0,0,2,2] 67.5 89.0  86.4 51.0 
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Table 4: The percentage of out-of-control signals and correct identification with 2 variables 

deviate from origin with mixed signs of covariance matrix. 

Mean vector 
% of Out-of-Control 

Signals 

% of Correct Identification 

 

Method 1 Method 2 Method 3 

[2,2,0,0] 51.7 96.4 91.7 47.9 

[2,0,2,0] 100.0 95.4 100.0 47.9 

[2,0,0,2] 49.8 92.8 95.7 52.0 

[0,2,2,0] 53.5 93.8 86.8 49.7 

[0,2,0,2] 100.0 94.9 95.6 49.2 

[0,0,2,2] 54.2 94.7 91.5 52.0 

 

 

Table 5: The percentage of out-of-control signals and correct identification with 2 variables 

deviate from origin in a different direction with all positive signs of covariance matrix. 

Mean vector 
% of Out-of-Control 

Signals 

% of Correct Identification 

 

Method 1 Method 2 Method 3 

[2,-2,0,0] 100.0 98.9 99.0 53.0 

[-2,2,0,0] 100.0 99.2 99.0 49.2 

[2,0,-2,0] 95.3 98.5 99.0 49.9 

[-2,0,2,0] 95.9 98.9 98.9 48.1 

[2,0,0,-2] 99.5 98.7 97.1 51.7 

[-2,0,0,2] 99.6 98.3 79.7 50.6 

[0,2,-2,0] 99.8 98.7 98.6 49.4 

[0,-2,2,0] 99.6 98.6 98.3 48.7 

[0,2,0,-2] 95.8 99.1 97.9 51.1 

[0,-2,0,2] 94.7 98.7 97.2 51.2 

[0,0,2,-2] 97.9 98.7 95.5 50.0 

[0,0,-2,2] 98.3 98.3 95.8 50.8 

 

 

Table 6: The percentage of out-of-control signals and correct identification with 2 variables 

deviate from origin in a different direction with mixed signs of covariance matrix. 

Mean vector 
% of Out-of-Control 

Signals 

% of Correct Identification 

 

Method 1 Method 2 Method 3 

[2,-2,0,0] 100.0 92.8 94.4 49.9 

[-2,2,0,0] 100.0 92.5 94.3 47.6 

[2,0,-2,0] 43.8 90.5 82.4 51.5 

[-2,0,2,0] 40.2 91.5 81.9 54.0 

[2,0,0,-2] 100.0 93.5 94.1 49.0 

[-2,0,0,2] 100.0 93.3 82.1 50.0 

[0,2,-2,0] 100.0 92.2 79.7 50.6 

[0,-2,2,0] 100.0 94.0 80.9 51.7 

[0,2,0,-2] 40.1 89.4 95.5 48.0 

[0,-2,0,2] 43.3 91.2 96.0 51.2 

[0,0,2,-2] 100.0 93.0 93.9 50.8 

[0,0,-2,2] 100.0 92.7 94.8 52.9 
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The percentages of out-of-control signals are clearly higher in Table 3 except for cases 2 and 

5 which shows 100% signals in Table 4, even so, Table 3 also shows a very high percentage of 

the out-of-control signals which are nearly 100% correct identification for those particular cases. 

In Table 3, method 1 and 2 give similar results whereas in Table 4, method 2 has lower 

percentages of correct identification when the deviated variables are variable 2 and variable 3.  

In Table 5, most of the cases give a very high percentage of out-of-control signals. 

Diagnostic methods 1 and 2 show a similar ability in identifying the aberrant variables and 

method 3 also performed better even though still quite low compared to the first two diagnostic 

methods. In Table 6, the multivariate control chart detected all the out-of-control signals except 

for cases 3, 4, 9 and 10. Method 1 performed better in most of the cases and method 3 still 

having the lowest percentage of correct identification among the three methods.  

 

4. CONCLUSION 

 

In this study, it is found that multivariate control charts have more power to detect the out-of-

control signal when the variance covariance matrix has mixed signs values and only one variable 

deviated from origin. For the cases with two variables deviated from the origin in the same 

direction, higher detection of out of control signals obtained when the deviated variables has a 

moderate or low correlation in both types of variance covariance matrices.  Whereas, for the 

cases with two variables deviated from origin in different direction, multivariate control charts 

have very high percentages of signal‟s detection  for both cases except for two cases with mixed 

signs variance covariance matrix. Results showed that the signal‟s detection are less than 50% 

when the deviated variables are correlated moderately in negative direction. 

The results between diagnostic methods showed that method 1 generally has higher 

percentages of correct identification compared to the other diagnostic methods when only one 

variable deviated from origin regardless of the type of the variance covariance matrices except 

for one case in mixed signs variance matrix. Method 2 has showed a higher percentage of correct 

identification when  the deviated variable has a moderate correlation with other variables. For the 

cases with two variables deviated from origin in the same direction, method 1 and 2 generally 

has a similar performance except for one cases with mixed signs values in variance covariance 

matrix. Method 1 has higher percentage of correct identification when the deviated variables 

have a low correlation value. For the cases with two variables deviated from origin in different 

directions, method 1 and 2 have shared a very good performance in the case with all positive 

signs in variance covariance matrix. Whereas in the case with mixed signs values, method 1 has 

a better performance when the correlation between the variables is moderate in negative 

direction. These results support the finding by Das and Prakash(2008) which stated that the 

method introduced by Doganaksoy, Faltin and Tucker(1996) has a better performance in 

identifying the correct aberrant variable when the correlation between variables are low or 

moderate. 
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ABSTRACT 

 

In this paper, a new generalization of the Polya-Eggenberger distribution has been introduced by 

compounding the Binomial distribution with the generalized Beta distribution of Π-kind defined 

by Nadarajah and Kotz (2003). Some special cases, moment generating function and factorial 

moments of the distribution have been derived in terms of generalized hypergeometric function. 

Stirling numbers of second kind has been used to obtain the moments about zero. Finally, a 

computer programme in R-Software has been used to ease the computations for estimating the 

parameters of the distribution for data fitting and it has been shown that the distribution gives a 

remarkably best fit as compared to other generalizations present in the literature. 

 

Keywords: Binomial distribution, generalized Beta distribution of Π-kind, generalized Polya-

Eggenberger distribution, moment generating function, Chi-squre fitting. 

 

1. INTRODUCTION 

 

Urn models have been used by many authors to describe several classical contagious 

distributions. The first work seems to have been done by Eggenberger and Polya (1923).  They 

considered one Urn model and obtained Polya-Eggenberger and inverse Polya-Eggenberger 

distributions. Janardan and Schaeffer (1977) have called these distributions as Markov-Polya 

distributions. The sampling scheme used in deriving Polya’s distribution is known as Polya–

Eggenberger sampling schemes where we draw the balls with replacement, note the colour of the 

ball drawn and  add c additional balls of the same colour before the next draw is performed. 

Many generalization of the Polya-Eggenberger distribution are present in the literature, 

almost all are derived through urn models. Janardan (1973) obtained quasi-Polya distribution by 

introducing an urn model dependent on predetermined strategies. Again in 1975, Janardan used 

two urn models with predetermined strategy but with Eggenberger and Polya sampling scheme 

and obtained qusi-Polya distribution and inverse quasi-Polya distribution. Sen and Mishra (1996) 

unified both the sampling schemes (direct and indirect) by introducing a new parameter to obtain 

a generalized Polya-Eggenberger model with Polya-Eggenberger and inverse Polya-Eggenberger 

distributions as its particular cases. Sen and Ritu (1996) introduced three generalized Markov-

mailto:anwar.hassan5@gmail.com
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Polya urn models with predetermined strategies by the unified sampling scheme. Most recently, 

Hassan and Bilal (2006) introduced a generalized Negative Polya-Eggenberger distribution 

through a mixture model which has Polya-Eggenberger distribution as its particular case. 

In this paper, a new generalization of the Polya- Eggenberger distribution has been proposed 

involving hypergeometric function which is more versatile as compared to other generalizations 

present in the literature. This fact has been illustrated with the help of three data sets presented in 

section 4 of this paper. In section 2, we derived the proposed model and section 3 deals with 

some interesting structural properties of the proposed model. Finally, in section 4, a computer 

programme in R-Software has been used to ease the computations for estimating the parameters 

of the proposed model for data fitting and it has been shown that the proposed model gives a 

remarkably best fit as compared to other generalizations present in the literature 

 

2. THE PROPOSED MODEL 

 

When a sample of fixed size n  is taken from an infinite population where each element in the 

population has an equal and independent probability p  of possessing a specified attribute or the 

sample is taken from a finite population where each element in the population has an equal and 

independent probability p of having a specified attribute and elements are sampled independently 

and sequentially with replacement then these situations can be represented by a random variable 

X (possessing the attribute) that follows Binomial distribution with parameters ),( pn  and pmf 

given by   

      nxppppxP xnx
n

x

,.....,2,1,0,10,)1();( 







                                  (2.1) 

In real life situations, the assumption that the probability p of each element (possessing the 

attribute) is constant from trial to trial does not seem to be realistic. This assumption holds good 

in case of chance mechanism only. In fact, every living being use their past experience (success 

or failure) and wisdom for determining their future strategies to achieve their goals and so the 

probability p of a success does not remain constant and thus may be considered as a random 

variable taking values between 0  and 1  , 10  p . The natural distribution of  p  is Beta 

distribution. 

Beta distributions are very versatile and a variety of uncertainties can be usefully modeled by 

them. Many generalizations of Beta distribution involving algebraic and exponential functions 

have been proposed in the literature; see chapter 25 in Johnson et. al. (1995) and Gupta and 

Nadarajah (2004) for detailed accounts. In (2003), Nadarajah, S. and Kotz, S. introduced a new 

generalization of Beta distribution of II-kind in terms of hypergeometric function with 

parameters ),,( ba  and p.d.f. given by 
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for 10  p , 0,0  ba and 0  and ),( ba  is a Beta function where as  ];;,1[12 pbaaF  is a 
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where ][ ja  stands for ascending factorials of ‘ a ’ given by )1)....(1(][  jaaaa j . Assuming the 

distribution of a random variable p as (2.2), the distribution of a random variable X  is obtained by 

compounding the Binomial model (2.1) through the values of p  with the generalized Beta 

distribution of II-kind (2.2), we obtain 
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The last sum is a generalized hypergeometric function, the equation above can be written as 
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This can be put into an alternative form as 
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        (2.4) 

 

for nx ,....,1,0 , 0),,,( ban  and ]1;1,;,,1[23  nbabaxbaaF   is a generalized hypergeo-

metric function which is absolutely convergent if 0)Re(  xnb  , see chapter 5, page 74, 

Special functions by Earl D. Rainville (1971) for details. The expressions (2.3) and (2.4) 

represent a new generalization of the Polya-Eggenberger distribution with parameters ),,,( ban . 

 

Remarks: For 1 ba or 1 or 0a  or 0b , the proposed distribution (2.4) reduces to 

Polya-Eggenberger distribution with parameters in different forms.  

 

3. STRUCTURAL PROPERTIES 

 

In this section, some of the interesting properties of the proposed model have been explored in 

order to understand its nature to some extent. These are described below. 

 

3.1 Mean and Variance 

3.1.1 Mean 

By the conditional mean, we have  

 

 )(XEMean   )( pXEE    (3.1) 
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where )( pXE is a conditional expectation of X given p and for given p  the random variable X has 

a binomial distribution (2.1) with mean and variance given by 
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Using (3.2) in (3.1), we get ][)( pEnXE  .Since p is varying as the generalized beta 

distribution of II-kind (2.2) with m
th

 moment about origin given by 
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Taking 1m  in the equation above, we get the mean of the proposed model as  
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3.1.2 Variance 

Similarly, variance of the proposed model can be obtained by the conditional variance 

 

   )()()( pXEVpXVEXV          (3.4) 

 

The equation (3.4) together with (3.2) gives  
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Using (3.3) for 2,1m  in the equation above, we get 

 

]1,11,;1,,1[
),()1(

),(
)( 23 


 bababaaF

baba

banb
XV 




 

        ]1,3,;2,,1[
),()2(

),()1(
23 




 bababaaF

baba

babnn





  

          
2

23 ]1,11,;1,,1[
),()1(

),(












 bababaaF
baba

banb





.   

 

  



697 

 

3.2 Moment Generating Function  

 

The derivation of the moment generating function (mgf) of the proposed model is not 

straightforward as it involves generalized hypergeometric function  

 
]1,1,;,,1[23  nbabaxbaaF   

 

which is an infinite series not easy to be summed. Since the proposed model is obtained by 

compounding binomial model (2.1) with mgf )(tM PX
ntep )]1(1[   through the values of p  

with the generalized beta distribution of II-kind (2.2), therefore, a theorem by Feller (1943) 

yields the mgf of the proposed model as  
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By an application of beta integrals, the equation above yields the moment generating function of 

the proposed model as  

 

]1,1,;,,1[
)(

)1(

),(

),(
)( 23

0















 



kbabakbaaF
kba

e

ba

bab
tM

ktn

k

n

k
X 




  

 

3.3 Moments for the Proposed Model 

 

In this section, we obtained the rth moment about origin of the proposed model in terms of 

Stirling numbers of second kind and generalized hypergeometric function. By conditional mean, 

we have 

 

 )]([)( pXEEXE rr
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where )( pXE r  is conditional rth moment about origin of X given p and for given p the random 

variable X has binomial distribution (2.1) with rth moment about origin given by 
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Using (3.3) in the equation above, we get  
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Taking 4,3,2,1r  in (3.7), we get the first four moments about origin of the proposed model as 
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3.4 Factorial Moments 

 

Following the similar arguments of the previous section, the rth factorial moment of the 

proposed model can be obtained as 
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proposed model as   
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TABLE 4.1 Results of 10 shots fired from a rifle at each of 100 targets; Sveshnikcv, A. A. Ed. 

(1968), PP 312-313. 

No. of 

Accidents 

Obs. 

Freq. 

Expected frequencies 

PED GPED       

(SM 1996)         

 GNPED     

(HB 2006) 

Proposed 

Model 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

2 

4 

10 

22 

26 

18 

12 

4 

2 

0 

 0.15 

 1.29 

 5.04 

12.16 

20.03 

23.49 

19.85 

11.89 

  4.81 

  1.16 

  0.13 

 0.14 

 1.22 

 4.87 

11.91 

19.87 

23.58 

20.12 

12.13 

  4.87  

  1.13 

  0.16 

  0.14 

  1.22 

  4.86 

11.91 

19.89 

23.61 

20.13 

12.11 

  4.86 

  1.14 

  0.13 

 0.14 

 1.22 

 4.86 

11.92 

19.91 

23.63 

20.13 

12.09 

  4.85 

  1.14 

  0.11 

Total 100 100 100  100 

ML 

Estimate 

 

 

χ
2
 

(d.f) 

 n 10        

a 43.045327          

b 41.890767 

 

1.056273    

(4) 

n 10            

 -0.93094 

a 50.30695                

b 42.20174 

1.020418 

(3) 

n 9.244629     

 0.037662          

 47.262270          

 41.913235 

1.008995 

(2) 

n 10 

a 43.768887 

b 0.000211 

 41.319327 

1.001827 

(3) 

 

TABLE 4.2 (Source: Snedecor, G.W. and Cochran, W.G. (1967): Statistical methods, sixth 

edition, The Iowa University Press, Iowa, U.S.A., PP.237) 

No. of 

Accidents 

Obs. 

Freq. 

Expected frequencies 

PED 
GPED       

(SM 1996) 

GNPED     

(HB 2006) 

Proposed 

Model 

0 

1 

2 

3 

4 

5 

6 

7 

36 

48 

38 

23 

10 

3 

1 

1 

35.05 

48.66 

38.19 

21.97 

10.21 

 4.01 

 1.36 

 0.55 

35.59 

48.99 

38.07 

21.69 

  9.97 

  3.87 

  1.30 

0.52 

35.60 

 48.98 

 38.07  

21.70  

 9.98 

  3.87 

  1.30 

 0.50 

35.88 

48.56 

37.92 

21.86 

10.13 

  3.92 

  1.28 

  0.45 

Total 160 160 160 160 160 

ML      

Estimate 

 

 

χ
2
  

   d.f.                    

 n 7          

a 5.513321         

b 53.295234 

0.230829(3)      

n 7            

 -0.79706            

a 5.723447  

b 36.39953 

0.1877409 

(2)   

n 12.024178        

 0.1830634       

 5.6509704            

 37.1968856 

0.1813224 

(1) 

n 7            

a 4.471435            

b 0.001004 

 29.854893 

0.1429262 

(2) 

SM: Sen and Mishra  HB: Hassan  and Bilal 
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4.  GOODNESS OF FIT 

 

In this section, we present three data sets available in the literature to examine the fitting of the 

proposed model and comparing it with the fitting of Polya-Eggenberger distribution (PED), the 

generalized Polya-Eggenberger distribution (GPED) defined by Sen and Mishra (1996) and the 

generalized negative Polya-Eggenberger distribution (GNPED) defined by Hassan and Bilal 

(2006). Due to complicated likelihood function, the maximum likelihood estimate of the 

parameters of the proposed model is not straightforward and need some iterative procedure such 

as Fisher’s scoring method, Newton-Rapson method etc. for their solution. R-software provides 

one among such solutions. Therefore, a computer programme in R-software is used to estimate 

the parameters of the distribution. The ML estimates of the parameters so obtained are shown at 

their respective places in the table. It may be mentioned here that the parameter n  in case of   

PED, GPED defined by Sen and Mishra (1996) and Proposed model are known where as in case 

of GNPED, defined by Hassan and Bilal (2006), the value of n  is estimated. It is clear from all 

the tables above that the proposed model gives a satisfactory fit and provides a better alternative 

than the compared distributions.  
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ABSTRACT 

 

One of the obstacles facing the application of the Dirichlet modeling of compositional data is the 

occurrence of zero. In the Dirichlet model, the presence of zeros makes the probability density 

function vanish. Zeros in compositional data are classified into “rounded” zeros and “essential” 

or true zeros. The rounded zero corresponds to a small proportion or below detection limit value 

while the essential zero is an indication of the complete absence of the component in the 

composition. Several parametric and non-parametric imputation techniques have been proposed 

to replace rounded zeros and model the essential zeros under logratio model. In this paper, a new 

method based on Beta regression is proposed for replacing rounded zeros in compositional data. 

The performance of the proposed method is analyzed using Monte Carlo simulation and an 

illustrative example using real data is given.  

 

1. INTRODUCTION 

 

Compositional data are non-negative proportions with unit-sum. This type of data arises 

whenever objects are classified into disjoint categories and the resulting relative frequencies are 

recorded, or partition a whole measurement into percentage contributions from its various parts. 

The sample space of compositional data is the simplex DS defined as  

 

   1 1, , : 0 for 1,2, ,  and 1D D
D j jjS x x x j D x     

 

Compositional data occur in nearly all disciplines, but recognition and modeling of their basic 

structure have gotten particular attention in geology, chemistry, political science, business and 

economics. For example, economists might be interested in how the composition of household 

income spent on food, housing, clothes, entertainment and services. Due to the unit-sum 

constraint and its consequences, traditional regression models are not suitable for modeling 

compositional data. Aitchison (1986) suggested an analysis based on the logratios of the 

compositional data. Campbell and Mosimann (1987) developed an alternative approach by 

extending the Dirichlet distribution to a class of Dirichlet Covariate Models. Hijazi and Jernigan 

(2009) developed maximum likelihood inference in Dirichlet regression models. Hijazi (2006, 

2008) investigated the diagnostics checking and the residuals analysis in Dirichlet regression. 

In compositional data analysis, the presence of zero components represents one of the main 

obstacles facing the application of both logratio analysis and Dirichlet regression. In a logratio 
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analysis, we cannot take the logarithm of zero when applying the additive logistic transforma-

tion. In the Dirichlet model, the presence of zeros makes the probability density function vanish. 

In this paper, we propose a new technique, based on Beta regression, for replacing the zeros 

under Dirichlet model. Section 2 gives an overview of zeros and zero replacement strategies in 

compositional data besides the new proposed replacement method. A Monte Carlo simulation 

study to compare the proposed method with the multiplicative replacement strategy is presented 

in Section 3. An application to illustrate the use of the proposed technique is presented in Section 

4. Finally, concluding remarks are given in Section 5. 

 

2. ZERO REPLACEMENT IN COMPOSITIONAL DATA 

 

2.1 Types of Zeros in Compositional Data 

 

Aitchison (1986) classified the zeros in compositional data into “rounded” or trace elements 

zeros and “essential” or true zeros. The trace zero is an artifact of the measurement process, 

where observation is recorded as zero when it is below the detection limit (BDL). For example, 

in the porphyry deposits, assume that we record the amount on the different elements. If the scale 

used does not identify the presence of the element if it is less than 0.2%, then this component is 

recorded as zero. Thus the observed zero is a proxy for a very small number below 0.2%. On the 

other hand, often the observation is recorded as zero as an indication of the complete absence of 

the component in the composition. In the household budget, a household spending nothing on 

tobacco will have a zero for the share of the tobacco in the budget. 

 

2.2 Common Zero Replacement Strategies 

 

The treatment of the zero observations in compositional data should be done according to the 

cause of the zero (Aitchison 1986). Several attempts have been made to deal with the essential 

zeros using ranks (Bacon-Shone 1992) and conditional modeling (Aitchison and Kay 2003). In 

case of rounded zeros, Aitchison (1986) suggested the reduction of the number of components in 

the composition by amalgamation. That is, eliminating the components with zero observations by 

combining them with some other components. Such approach is not appropriate when the goal is 

modeling the original compositions or the model includes only three components. However, a 

more logical approach is to replace the rounded zeros by a small nonzero value that does not 

seriously distort the covariance structure of the data (Martìn-Fernández et al. 2003a). The first 

replacement method, the additive replacement, proposed by Aitchison (1986) is simply replacing 

the zeros by a small value  and the normalizing the imputed compositions. Fry et al. (2000) 

showed that the additive replacement is not subcompositionally coherent and consequently, 

distorts the covariance structure of the data set. 

Martin-Fernandez et al. (2003a) proposed an alternative method using a multiplicative 

replacement which preserves the ratios of nonzero components. Let  1, , D
Dx x x S   be a 

composition with rounded zeros. The multiplicative method replaces the composition x contain-

ing c zeros with a zero-free composition rSD according to the following replacement rule  

 

 
 

0

1 0

j

j
j j

if x
r

c x if x

 
 

  

           (1) 
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In addition, Martin-Fernandez et al. (2003a) emphasized that the best results are obtained 

when  is close to 65% of the detection limit. However, since the multiplicative replacement 

imputes exactly the same value in all the zeros of the compositions, this replacement introduces 

artificial correlation between components which have zero values in the same composition. 

Besides these nonparametric approaches, several parametric approaches based on applying a 

modified EM algorithm on the additive logratio transformation (Martin-Fernandez et al. (2003b), 

Palarea-Albaladejo et al. (2007) and Palarea-Albaladejo and Martìn-Fernández (2008)). 

However, none of these methods is applicable when the compositional data arise from Dirichlet 

model. 

 

2.3 Beta Regression Based Strategy 

 

As mentioned earlier, the existing parametric replacement strategies assume that the 

compositional data arise from the additive logistic normal distribution, the underlying 

distribution in logratio analysis (Aitchsion 1986). When the underlying distribution is Dirichlet, a 

natural imputation method should be based on Beta distribution as a marginal of Dirichlet 

distribution. Ferrari and Cribari-Neto (2004) have proposed a regression model when the 

response variable is beta distributed. The proposed model is based on the parameterization of the 

mean and dispersion parameters in the beta distribution as follows. If Y is beta distributed with 

parameters p and q, then the dispersion parameter =p+q and the mean parameter is then .
 The density of Y using this parameterization is given by 

 

 f(y;,)= 
()

()((1))
y1(1y)(1)1,      0<y<1            (2) 

 

Similar to OLS regression, the beta regression model is obtained by assuming that the mean  

can be written as a linear combination of some independent variables  1, , kx x  using a link 

function g(.) as 

 g()= 
i=1

k
 xii           (3) 

 

where 1, , k   is a vector of unknown parameters. Let  1 DX = x ,…,x  be the compositional data 

with rounded zeros in component xj. Our proposed approach works as follows: 

1. Split X based on the existence of rounded zeros in xj into a zero-free subdata X(1) and X(2), a 

subdata with all zeros in component xj.  

2. Apply beta regression on portion of X(1) where the values of the  j
th

 component are close to 

the detection limit. The j
th

 component is the response variable and the rest of components as 

covariates.  

3. Using the estimated regression parameters in (2), predict the imputed values of the rounded 

zeros in X(2).  

4. Use the multiplicative replacement strategy using the imputed values to replace the rounded 

zeros.  

5. Repeat this process sequentially on components with rounded zeros. 
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It is clear that this method takes into account the information included in the covariance 

structure and produces different imputed values for each composition. The method also assumes 

that the component with rounded zeros is correlated with the other components in the 

compositional data especially in X(1).  It is noteworthy that external covariates related to the 

component with rounded zeros might be used in the regression model sole or jointly with the 

compositional components. In addition, this method would not replace the zeros by negative 

values but it might replace them by values over the detection limit. 
 

3. SIMULATION-BASED RESULTS 

 

Our interest is mainly focused on to what extent the zero replacement strategies affect to the 

estimation of the relationship between the components. Consider a 4-component random 

composition drawn from Dirichlet distribution with parameters 1, 4, 15 and 20 i.e., D(1,4,15,20). 

For our simulation purposes, 100 datasets X of size 200 are drawn from the above Dirichlet 

distribution. Next, small values under the detection limit in the first component of X are replaced 

by zero. A range of 10 detection limits is considered from 0.0025 to 0.025 with increments of 

0.0025. Thus, 1000 datasets containing different number of rounded zeros are generated. To 

measure the distortion between the original data X and the imputed data X*, the mean squared 

distances (MSD) is used. The MSD is given by 

 

 
2 *200

1 ( , )

200

a i ii d x x
MSD





           (4) 

 

where the Aitchison’s distance (da) is defined as  

 

 

2
*

*

*
( , ) ln ln i

j

i
a i i

i j j

xx
d x x

x x

 
  
 
 

            (5) 

 

Figure (1) shows the mean MSD for the two replacement methods for the different detection 

limits. For small detection limits, the multiplicative replacement seems to perform better than our 

proposed method. However, as the detection limit increases and consequently the percentage of 

zeros, the beta regression based method outperforms the multiplicative replacement method. 

Same conclusion is drawn if the Euclidean distance is used instead of Aitchison distance in (4). 

To compare the effect of replacement method on the variability in the compositional data, the 

mean estimates of Dirichlet parameters are used. The variability in Dirichlet model is inversely 

proportional to the sum of its parameters. Figure (2) shows the mean estimate of the first 

parameters in the original data and the imputed data. Similar behavior is shown for the rest of the 

parameters. Compared to the proposed method, under the multiplicative replacement, the 

parameter is clearly overestimated and hence the total variability is underestimated. Such 

underestimation increases as the percentage of zeros increases. This is due to the replacement of 

all zeros with same value which is not the case in beta regression based method. 
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Figure 1: Replacement methods distortion 

 
Figure 2: Parameter estimation under Replacement methods 

 
 

4. APPLICATION 

 

Consider the data collected from a deep-sea core measuring 478 cm in length from the 

Mediterranean Sea floor (Davis 2002). The core was split and grain-size analysis was made of 51 

intervals. This paper focuses on the new proposed replacement method, we will consider that the 

instrument used does not detect the presence of any element if the percentage is less that 2.5%, 
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i.e. the detection limit is 2.5%. This will result in 9 compositions with sand component recorded 

as rounded zero as shown in Figure (3a). The Aitchison distance between the original data and 

the imputed datasets using the beta regression based method and multiplicative methods are 

0.0042 and 0.0094, respectively. This indicates that the new replacement method yielded an 

imputed data which is closer to the original than the one produced by the multiplicative method. 

The compositions with rounded zeros and the corresponding imputed compositions are shown in 

Figure (3b).  

The maximum likelihood estimates of the original data and the imputed data are given in 

Table (1). It is clear that the multiplicative replacement method underestimated the model 

parameters compared to the original data but the beta regression based method overestimated 

such parameters. The sum of the estimates under the proposed method is slightly larger than the 

corresponding sum in the original data resulting in a slightly smaller estimate of the variability. 

However, the multiplicative replacement method yielded slightly larger estimate of the 

variability. 

 

Table 1: Maximum likelihood estimates of original and imputed sediments data 

 Clay Silt Sand Sum 

Original Data 10.599 28.702 2.672 41.973 

Beta regression replacement 11.041 29.934 2.831 43.806 

Multiplicative replacement 10.243 27.709 2.538 40.490 

 

 
 

Figure 3: (a) The ternary diagram of the sediments data (b) The original compositions before 

rounding, imputed compositions with BRR (beta regression based replacement) and imputed 

compositions with MR (multiplicative replacement). 

 

 

5. COMMENTS AND CONCLUSION 

 

In this work we have proposed a new replacement method based on beta regression under 

Dirichlet model. The proposed method was compared with the multiplicative replacement 

method through simulation study and real data example implemented in S-Plus. The new method 

outperforms the multiplicative replacement method especially in datasets with large percentage 
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of zeros. This method gives positive imputed value but does not take into account the detection 

limit of the part. The method should be modified to overcome this deficiency. The proposed 

method is expected to be less efficient in the absence of correlation between the component with 

zeros and other components or external variables. 
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ABSTRACT 

 

The aim of this article is to propose a new method to estimate the Box-Cox transformation 

parameter simultaneously with the parameters of a location-scale family. The new estimator 

modifies Lloyd’s generalized least-squares method by adding the transformation parameter to the 

simple linear regression model to became     
 =+E(z(i)) + (i) I = 1, 2, …, n, where z(i) ,I = 1, 2 

,…,n, are the order statistics from a standard normal distribution. The regression-based estimator 

for   is the one that minimizes the residual sum of squares of the above model. Given   the 

corresponding estimators of  and 
2
 are BLUE. We show that the artificial regression estimator, 

Halawa (1996), and the Shapiro-Wilk estimator, Rahman (1999), are special cases of the 

regression-based estimator. A simulation study was conducted to compare the performance of 

the regression-based estimators with the normal likelihood estimators of Box-Cox. 

 

Keywords: Box-Cox transformation, goodness-of-fit tests, Shapero-Wilk test, artificial 

regression, generalized least squares. 

 

1. INTRODUCTION 

 

There has been a considerable literature on the subject of power transformation since they were 

introduced by Box and Cox in (1964). In a single sample model the main object of power 

transformation is to achieve normality. The Box-Cox family of power transformations enlarges 

the parametric model to include transformation parameters and then estimating these parameters 

simultaneously with the parameters of the original model.  Suppose that F   is a family of 

absolutely continuous distributions with cdf’s of the form F(y)=G((x-)/) (>0). In other 

words, F    is a location-scale family. Let h(Y, ) denotes the Box-Cox power transformation, i.e. 

 

h(Y, ) = 
    

 
     

     

  
   

   
                                                                                                         (1) 

 

Suppose that there exists a  
*
which produces the model 
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 h(Y, 
*
) =  +                                                                                                                 (2) 

where  has density f. The Box-Cox normal likelihood estimator of the parameter vector 

=(,, )
t
   is based on the assumption that under the model (2) the density f is the standard 

normal distribution. The log likelihood function used to estimate  is given by 

BC ( ,  ,  ; Y1, ..., Yn) = 
2

n
ln (2 ) – 

2

n
ln (

2
)  

                        –
22

1


 



n

i 1

(Y
)( 

i –  )
2
 + ( – 1) 



n

i 1

ln (Yi)                    (3) 

For some initial value for  , one can use (1-3) to find maximum likelihood estimates of  and 
2
. 

Substituting those estimates in (3) one can find the maximum likelihood estimate of   by 

maximizing (3). Hence, one gets the Box-Cox normal maximum likelihood estimators  

BC



 = ( BC



 , ˆˆ ( )BC  , BC



  (


 ))
t
 

where  

BC



  =  


)( Y                                                                                                (4) 

BC



  = 
2)()(

1

)(
1 




  YY
n

i

n

i

                                                                                         (5) 

Kouider and Chen (1995) proved that the BC   is concave downward and hence it has a local 

maximum. Cho et al. (2001) established strongly consistent and asymptotically normal of    . 

Bickel and Doksom (1981) showed that “the performance of all Box-Cox type procedures is 

unstable and highly dependent on the parameters of the model in structured models with small to 

moderate error variances”. Carrol (1982) showed that       is very sensitive to outliers and it can 

be highly inefficient if the distribution of  has heavier tails than the normal distribution. Robust 

estimators for the Box-Cox transformation parameter have been proposed by Carrol (1980, 1982) 

and by Bickel and Doksum (1981). A bounded influence estimator of ( , , ) was given by 

Carrol and Ruppert (1985). 

In this article we propose a new estimator for Box-Cox transformation parameter that utilizes 

a modified Lloyd’s generalized least-squares model: 
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h(Y(r) , 
*
) =  + E(Z(r))+r                                                                                   (6) 

where Y(1),Y(2),…,Y(n) are order statistics for a random sample from a location-scale family F, 

and  Z(r)=(Y(r)-)/, r=1,2,…,n. Accordingly, the resulting estimators of  and 
2
 are BLUE. A 

robust form of this regression-based estimator will be presented in a subsequent article. 

Also, we show that artificial regression estimator, Halawa (1996), and the Shapiro-Wilk 

estimator, Rahman (1999), are special cases of the regression-based estimator.  We compare the 

performance of the regression-based estimators with the normal likelihood estimator of Box-Cox 

according to two criteria: 

1. The mean squared error of the estimate. 

2. Empirical power of a goodness-of-fit test for the transformed data.  

The rest of the paper is organized as follows. Section 2 describes the proposed general regression 

based estimators, the artificial regression estimator and the Shapiro-Wilk estimator. Section 3 

discuses the results of the Monte Carlo simulations according to the mean square error criterion. 

Section 4 present the comparisons according to the goodness-of-fit tests. Conclusions and 

remarks for further studies are presented in section 5. 

 

2. REGRESSION-BASED ESTIMATORS FOR THE BOX-COX TRANSFORMATION 

PARAMETER 

Given the model (6), let E(Z(r))=αr ,  cov(Z(r),Z(s))=rs        r,s=1,2,…,n. 

be the expected values and covariances of order statistics from a random sample of the standard 

normal distribution. Then 

 E(Y(r)) =  +  αr ,                       cov(Y(r),Y(s)) = 
2
 rs 

where the αr , rs can be evaluated “once and for all”. These equations can be written as 

 E(Yo)= 1 +α =A        cov(Yo)=
2
 V, 

where Yo and  α are the column vectors of the Y(r) and αr respectively; 1 is a is a column of n 1’s 

and A=(1,α) ,   
t
=( , ) , 

2
 V  is the covariance matrix of the Y(r). 

If the covariance matrix is positive definite, we can apply the generalized Gauss-Markov least-

squares theorem to get the BLUE of  as 

  
1ˆ t t

oA A A Y


                                         (7) 
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cov( ̂ ) =  
1

2 tA A


                                                                                                (8) 

where = V
-1

. The result that generalized Gauss-Markov estimators above are BLUE is known 

as the Aitken theorem. For a proof see Kariya and Kuata (2004), page 34. The residual sum of 

squares is 

 RSS = ˆ ˆ( ) ( )t

o oY A Y A      = ( ) ( )t t

o x x oY I M I M Y                                     (9) 

where Mx = A(A
t
 A)

-1
A

t
. We suggest a regression based estimator of the Box-Cox power 

transformation as follows: 

1. Start by initial value of   (say  
*
). 

2. Compute ̂ ( 
*
) =  

1
*t t

oA A A Y  

   

3. Use an optimization procedure to find   that minimizes RSS  

*

* *
( ) ( )

t t

o x x o
RSS Y I M I M Y

  

 
     

4. Repeat (2) and (3) until convergence. 

A robust form of this estimator could be defined by the location and scale linear estimators from 

double censored samples presented by Sarhan and Greenberg (1956; 1958). The moments of 

order statistics from the normal distribution (A and ) are tabulated for small samples only, 

Harter (1961). Further study is needed to explore the small sample and large sample behavior of 

the proposed regression based estimators. 

We establish here only COV( ̂ |
  

). If the transformation parameter is known ( = 
*
), then 

h(Yr, 
*
) will have a standard normal distribution. David and Nagaraja (2003) showed that 

 cov( * *

2ˆ ˆ,
  

  )=0     var( *ˆ
 

 ) = 
2

n


   var( *ˆ

 
 ) = 

2

'



 
. 

Note that var( *ˆ
 

 ) = ˆvar( )BC
   

         

2

ˆvar( )
2

BC
n


 

 

Using the available tables for the mean and covariances of order statistics, we compute '   . 

The table below shows that for n ≤ 30 var( *

2ˆ
 

 ) < ˆvar( )BC
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n 1//(α
t
α) 1/2n 

2 0.180045 0.25 

4 0.105696 0.125 

6 0.074603 0.083333 

8 0.057587 0.0625 

10 0.046868 0.05 

16 0.030044 0.03125 

20 0.024222 0.025 

24 0.020152 0.020833 

28 0.016257 0.017857 

30 0.01097 0.016667 

 

2.1 The Artificial Regression Estimator 

Halawa (1996) uses the model given by (6) with E(X(i)) replaced by its Blom’s approximation 

z(i), Blom (1958) and Lin and Vonesh (1989), 

z(i) ≈  1  












25.0

375.0

n

i

 

The artificial regression model, given by 

)(

)(

 
i  =  +  z(i) + )(i   , i = 1,2,…,n                                                                                        (10) 

adds a covariate z to the original model (1) that could reduce the large variance of the Box-Cox 

transformation estimates.   

The log likelihood for the model (10) is given by 

R ( , ,  ; Y1,..,Yn) = – 
2

n
ln (2 ) – 

2

1



n

i 1

(Y )(

)(

 

i  –   –  z(i))
2
  + 



n

i 1

ln ( 1  
)            (11) 

Start by initial value of   (say  
*
), one gets the maximum likelihood estimates of | * and | * . 

Substitute these values in (5) one gets  ̂  by a maximization numerical procedure. Substitute in 

̂ and ̂  and iterate until converge. The artificial regression estimators will be denoted by 

R


= ( R 


, ˆˆ ( )R  , R


 (


 ))
t
. 

Halawa (1996) proved that the artificial regression estimators are strongly consistent and 

asymptotically normal. 
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 Note that 
2

ˆvar( )BC
n


     while 

1
ˆvar( )R

n
     , 

        
2

ˆvar( )
2

BC
n


        while 

1
ˆvar( )R

n
   

i.e. the artificial regression estimator gives better results than the normal likelihood estimators 

for 
2
≥2. 

 

2.2 The Shapero-Wilk Estimator 

Given the model (6) the Shapiro-Wilk statistic is defined by 

  W = 
2

2

ˆ

S


 . B

2
              (12) 

where    S
2
= 

2

1

( ) /( 1)
n

i

y y n


   ,  

      *

*ˆ
'

t X
 




 





                                                                                                    (13) 

  B
2
=

'

'

 

 




                                                                                                       (14) 

Note that 
2̂ and S

2
 are unbiased estimators for the slope of regression of y(i) on E(Z(i)). The 

constant B
2
 ensures that the test statistic W always takes values between 0 and 1, Shapiro and 

Wilk (1965). 

A computing formula for W is given by ,/)( 22
0 SYaW t  where ./   ta  Shapiro 

and Wilk used approximations for the components ai of a, and gave a table for sample sizes from 

n=3 to 50. 

D'Agostino, and Stephen, (1986) page 206 stated that “Alternatively, since in the generalized 

least squares analysis RSS is minimized by the parameter estimates ̂ and ̂  , the test might be 

based on Z2(X,α)=RSS/S
2
. Some examination of such tests has been made by Spinelli (1980),  for 

the exponential and the extreme-value distributions, but otherwise they have not been much 

developed”. 

The W-statistic of the transformed data for given   is 
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W = 
2)()(
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If there exist a   such that the power transformed observations are “approximately” normally 

distributed N(,
2
), the maximum W-statistic estimate is that value which maximizes the 

Shapero-Wilk W statistic, i.e. maximizes the observed significance level, of the transformed 

data. One method to find  ̂  is solve nonlinear equation by letting the first derivative of W( ) 

with respect to   equal zero . 
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Putting dW/d =0 we get
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Solving the above equation (numerically) we get ˆ
W . Using ˆ

W we get  
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Sun (1978) conducted a small Monte Carlo simulation to study the performance of the 

transformed estimates for two sample sizes (25, 50). He found that the maximum W-statistic has 

smaller bias but larger variances than the normal likelihood estimator and the bias increases and 

the sample variance of both estimates decreases as the absolute value of   increases. 

Rahman (1999) conducted a Monte Carlo simulation to compare the performance of       , ˆ
R 

and ˆ
BC for sample sizes (20, 40, and 100). In almost all situations he considered, variability for 

ˆ
R are smaller compared to that of ˆ

W and ˆ
BC . 
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3. SIMULATION STUDY 

 

We conduct a simulation study to compare the performance of the three  methods of estimation 

at sample sizes 20, 40 and 100. To cover the situations not considered by Rahman (1999), we 

use:   = 0, 0.25, 0.5, 2, noise ratio () = 1, 2, 3, 4, 5, and standard deviation for the 

transformed data = 1, 2, 3, 4, 5. For each method of estimation a 1000 random sample from the 

standard normal distribution were generated with initial seed 9831815 using the mathematical 

programming language GAUSS(9.0). We use the inverse transformation 

 

1 ( )      0

exp( )         0   
Y

    

   

   
 

   

The choices of the parameters are made such that the Y vector is always positive. Tables (1) to 

(5) give the biased, variances and average mean square error of the estimates for the cases 

considered.  

Table (1) compare the performance of the estimators for different values of  , with fixed values 

of  and . This table shows that: 

 ˆ
W has the highest biased and its variances are inflated. 

 The ratios var(
ˆ
W )/var(

ˆ
R ) and var(

ˆ
BC 

)/var(
ˆ
R ) is very large. This means that the 

estimator 
ˆ
R is stable in a small interval near  . 

 The mean square error of ˆ
R and ˆ

R  are the smallest for all values of  . 

Table (2) illustrate the effect of the sample size on the estimates, with fixed  and noise ratio. 

The table shows that: 

 The mean square error of ˆ
R is much smaller than the mean square error of the other 

estimators for all sample sizes. 

 The variances of all estimates decreases with the increase in the sample size, but the 

variances of the artificial regression method are much smaller for all sample sizes. 

Table (3) illustrates the performance of   estimators with different values of  and noise ratios. 

The table shows that: 

 ˆ
R has the smallest mean square error when (=2, />2) , (=1,/=5) and when >2 

for all noise ratios. 

 The mean square error of ˆ
W is the smallest when (=2, /=1). 



716 
 

 The mean square error of ˆ
BC is the smallest when ((=1, /<1) and when (=2, 

/=2). 

 For (=4, /=1, 2, 5) and for (=5, /=1) the biased of ˆ
R is the smallest.  

 For (=5, /= 5) the biased of ˆ
BC is the smallest. 

 For all other combinations of  and / the biased of ˆ
R is the smallest. 

 The variance of ˆ
R is the smallest except when (<3, /=1), where the variance of ˆ

BC  

is the smallest. 

Table (4) illustrates the effect of the estimated   on ̂ .The table shows that: 

 The bias of ̂ ’s increases as the noise ratio increases. 

 The bias of both 
ˆ

BC
and Ŵ  increase as  increases 

 For ≤3 the bias of ˆ
R decreases as  increases. 

 For > 3 the bias of ˆ
R increases as  increases. 

 The variance of ̂ ’s increases as the noise ratio increases. 

 ˆ
R has the smallest mean square error for >2 and for (=2 , / >2) .  

 ˆ
BC  has the smallest mean square error for. for =1 and for (=2 , / ≤2). 

Table (5) illustrates the effect of the estimated   on ̂ .The table shows that: 

 ˆ
R has the smallest mean square error for >1, except when (=2, / =2) where ˆ

BC

has the smallest mean square error. 

 ˆ
BC  has the smallest mean square error for (=1 , / ≤4) 

 The mean square error of ˆ
BC and ˆ

W inflated as the noise ratio increases while ˆ
R

remains stable. 

 

4. GOODNESS-OF-FIT COMPARISONS 

 

The second criterion to assess the performance of the power transformation parameter estimators 

is the goodness-of-fit of the transformed data. More specifically, which estimation method (for 

 ) will have the smallest significance level of a test for normality if the parent distribution is not 

normal. Three goodness-of-fit tests will be considered: 

Anderson Darling test for normality: Anderson and Darling (1954)  test is an EDF test. It is 

applicable for symmetric or asymmetric distributions for small and large samples. It is sensitive 

to outliers. 
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Shapiro-Wilk test for normality: Royston (1982) showed that the Shapiro-Wilk test is the most 

powerful test for symmetric light-tailed alternatives. Also, it has high power for skewed 

alternatives. 

Filliben probability plot test for normality: Filliben (1975) introduces a test for normality as the 

correlation coefficient between the order statistics Yo and its medians (instead of its means as the 

Shapiro-Wilk test statistic). The power of the test is high for symmetric heavy-tailed 

distributions. The critical values are tabulated for small and large sample sizes. 

The simulation study was done in two phases: 

Phase I: 

Generate 1000 random sample (n=20, 40 and 100) from a transformed data on the form 

Y = ( 1 +   i ~ N(0, 1),

where  andand =1, 2, 3, 4and

 For each sample compute ˆ ˆ ˆ,   W R BCand    

 For each test for normality compute the empirical significance level defined as the 

percentage of cases the null hypothesis is rejected at significance level α=0.05  

       
#

ˆ
1000

m
n

ofT Z 


    

Tm is the test statistic for sample m, m=1,2,…,1000.    

Table (6) gives 1- ˆ
n  for the three test statistics with  =1. 

Table (7) gives 1- ˆ
n   for the three test statistics with  =0.5. 

These tables show that: 

 For the artificial regression method 1- ˆ
n   is smaller than the corresponding values for 

the other methods of estimation.  

 The empirical significance level is almost the same for the other methods. 

 The performance of the artificial regression improves as the noise ratio increases. 

Phase II: 

 Generate 1000 random sample (n=20, 40 and 100) from the distributions in the following 

table. 
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Distribution Skewness Kurtosis 

Lognormal (0 , 1) 6.185 113.936 

SConN (0.1 , 9)  0 8.333 

Gamma (4 , ) 1 7.5 

Gamma (9 , )  0.6667 5.0 

Gamma (16 , ) 0.5 4.125 

Weibull (2.1 , ) 0.5672 3.1323 

Weibull (3.3 , ) 0.07791 3.7110 

Weibull (4.5 , ) -0.1784 2.8081 

 

SConN means contaminated normal distribution of the form Y=0.9N(10,1)+0.1N(10,9), =5 and 

10.  

 For each sample compute ˆ ˆ ˆ,   W R BCand   and transform the data. 

 For each test for normality compute the empirical significance level defined as the 

percentage of cases the null hypothesis is rejected at significance level α=0.05. 

Table (8) gives (1 - ˆ
n ) for the three test statistics for positively skewed distributions. Table (9) 

gives (1 - ˆ
n ) for the three test statistics for the negatively skewed Wiebull distribution. Table 

(10) gives (1 - ˆ
n ) for the three test statistics for the contaminated normal distribution. 

These tables show that: 

 The artificial regression method does not perform will, may be because of the use of the 

approximated means of order statistics. 

 The effect of skewness and kurtosis on (1- ˆ
n ) has no clear pattern. 

 The performance of all methods of transformation decreases as the sample size increases.   

 The Box-Cox transformation was designed to remove skewness only, so it has low (1  

ˆ
n ) for heavy tailed distributions. In such cases a robust transformation could perform 

better. 

 

5. COMMENTS AND CONCLUSION 

 

We propose a general regression-based estimator for   that minimizes the residual sum of 

squares of Lloyd’s generalized least squares. Two estimators for the Box-Cox transformation 

parameter of this type have been presented; the artificial regression estimator, Halawa (1996), 
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and the Shapiro-Wilk estimator, Sun (1978), Rahman (1999) and Gaudard and Karson (2000). 

Both estimators depend on an approximate values for E(Z(r)) and cov (Z(r), Z(s)).A simulation 

study was conducted to compare the performance of the regression-based estimators with the 

normal likelihood estimator of Box-Cox ˆ
BC The simulation study shows that: 

For fixed µ and : 

 The artificial regression estimator for  ( ˆ
R ) is stable in a small interval near  .  

 The Shapiro-Wilk estimator for   ( ˆ
W  ) has the highest biased and its variance is 

inflated.  

 The mean square error of ˆ
R and ˆ

R  are the smallest for all values of   . 

The effect of the sample size: 

 For fixed  and fixed noise ratio the mean square error of ˆ
R is much smaller than the 

mean square error of the other estimators for all sample sizes. 

 The variances of all estimates decreases with the increase in the sample size, but the 

variances of the artificial regression method are much smaller for all sample sizes. 

The performance of   estimators with different values of  and noise ratios:   

 The artificial regression estimator ˆ
R  has the smallest mean square error when (=2, 

/>2) , (=1,/=5) and when >2 for all noise ratios. 

 The mean square error of ˆ
W is the smallest when (=2, /=1). 

 The mean square error of ˆ
BC is the smallest when ((=1, /<1) and when (=2, 

/=2). 

 The variance of ˆ
R is the smallest except when (<3, /=1), where the variance of ˆ

BC  

is the smallest. 

The estimators of  and  are not robust for all methods: 

 The bias of ̂ ’s increases as the noise ratio increases. 

 The variance of ̂ ’s increases as the noise ratio increases. 

 The mean square error of ˆ
BC and ˆ

W inflated as the noise ratio increases while ˆ
R   

remains stable. 

 For ≤3 the bias of ˆ
R decreases as  increases. 

 For > 3 the bias of ˆ
R increases as  increases. 

The empirical power for the goodness of fit tests shows that: 
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 The artificial regression method does not perform will, may be because of the use of the 

approximated means of order statistics. 

 The effect of skewness and kurtosis on empirical power has no clear pattern. 

 The performance of all methods of transformation decreases as the sample size increases.   

 The Box-Cox transformation was designed to remove skewness only, so it has low 

empirical power for heavy tailed distributions. In such cases a robust transformation 

could perform better. 

A further study is needed to compare the proposed estimator for the Box-Cox transformation by 

minimizing the residual sum of squares of the generalized least squares. A robust form of this 

estimator could be defined by the location and scale linear estimators from double censored 

samples. Further study is needed also do derive the influence functions for the above estimators. 
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APPENDIX 

Table (1)  estimates : n=40, =3 and noise ratio=5 

   
BC



  R



  W



  BC



  
R



  W



  BC



  R



  W



  

-1 

bias 0.0801 -0.0383 0.0599 -25.879 -1.2477 -71.983 9.9239 0.1001 32.863 

var 0.5021 0.0018 0.5918 21995 2.0915 3.9001e+6 3775.4 0.0484 3.9001e+6 

mse 0.5085 0.0033 0.5953 22662 3.6481 3.9049e+6 3873.5 0.0584 3.9011e+6 

0 

bias 0.0010 0.0088 0.0013 1.5894 1.126 1.9782e+59 0.7082 0.1869 1.2354e+60 

var 0.0021 8.8117e-5 0.0055 47.575 1.7032 3.9134e+122 7.8388 0.0928 3.9134e+122 

mse 0.0021 0.0002 0.0055 50.096 2.9709 3.9134e+122 8.3396 0.1277 3.9286e+122 

0.5 

bias -0.0432 0.0302 -0.0286 12.555 1.4344 26.15 4.9459 0.1750 11.632 

var 0.1474 0.0009 0.1674 3212.9 2.3344 96379 520.56 0.0569 96379 

mse 0.1492 0.0018 0.1682 3370.2 4.3915 97053 544.97 0.0875 96514.303 

1 

bias -0.0699 0.0450 -0.0416 27.401 1.4677 63.77 10.488 0.1586 27.662 

var 0.5167 0.0020 0.5905 19016 2.3969 8.3749e+5 3205.9 0.0522 8.3749e+5 

mse 0.5215 0.0040 0.5921 19765 4.5508 8.4147e+5 3315.6 0.0773 8.3825e+5 

 
Table (2)  estimates for different sample sizes =0.5  =5 noise ratio=5  

n  
BC



  R



  W



  BC



  
R



  W



  BC



  R



  W



  

20 

bias -0.0701 -0.1107 -0.0263 139.91 -7.9409 1.3054e+6 63.166 -2.5267 9.6032e+5 

var 0.2605 0.0016 0.4043 2.3923e+6 6.4718 1.4606e+16 5.7696e+5 0.0504 1.4606e+16 

mse 0.2654 0.0138 0.4049 2.4116e+6 69.529 1.4606e+16 5.8089e+5 6.4346 1.4607e+16 

40 

bias -0.0409 -0.0558 0.0291 36.115 -4.4363 92.119 13.919 -1.5061 41.771 

var 0.1339 0.0008 0.1551 32502 4.7984 2.0012e+6 5360.3 0.0839 2.0012e+6 

mse 0.1355 0.0039 0.1559 33803 24.479 2.0095e+6 5553.5 2.3523 2.1129e+6 

100 

bias -0.0199 0.0119 -0.0266 8.1943 1.1609 8.1878 3.0236 0.1581 3.1127 

var 0.0475 0.0003 0.0490 1069.1 2.7878 1295 121.23 0.1231 1295 

mse 0.0479 0.0004 0.0497 1136.2 4.1353 1316.9 130.36 0.1481 1304.6889 
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Table (3)  estimates =0.5 n=40 different  and noise ratios 

   /  BC



  R



  W



  
bias var mse bias var mse bias var mse 

1 

1 -0.0540 0.0321 0.0350 0.6492 0.0418 0.4632 -0.0256 0.0397 0.0404 

2 -0.0450 0.0673 0.0693 0.6384 0.0237 0.4279 -0.0257 0.0778 0.0784 

3 -0.0392 0.1131 0.1146 0.5724 0.0112 0.3388 -0.0273 0.1302 0.1309 

4 -0.0432 0.1639 0.1658 0.5117 0.0072 0.2690 -0.0264 0.1904 0.1910 

5 -0.0395 0.2229 0.2244 0.46508 0.0045 0.2208 -0.0246 0.2547 0.2553 

2 

1 -0.1151 0.0089 0.0223 0.1379 0.0119 0.0309 -0.0762 0.0149 0.0207 

2 -0.0537 0.0321 0.0350 0.1949 0.0059 0.0438 -0.0300 0.0405 0.0414 

3 -0.0417 0.0681 0.0699 0.1804 0.0033 0.0358 -0.0296 0.0805 0.0813 

4 -0.0437 0.1140 0.1159 0.1611 0.0021 0.0280 -0.0288 0.1302 0.1311 

5 -0.0461 0.1702 0.1723 0.1434 0.0014 0.0220 -0.0295 0.1908 0.1916 

3 

1 -0.1605 0.0059 0.0316 -0.0131 0.0059 0.0061 -0.1184 0.0112 0.0252 

2 -0.0618 0.0224 0.0262 0.0438 0.0029 0.0049 -0.0348 0.0300 0.0312 

3 -0.0455 0.0557 0.0578 0.0391 0.0017 0.0032 -0.0274 0.0661 0.0668 

4 -0.0430 0.0973 0.0991 0.0333 0.0012 0.0023 -0.0273 0.1114 0.1122 

5 -0.0432 0.1474 0.1492 0.0301 0.0009 0.0018 -0.0286 0.1674 0.1682 

4 

1 -0.1853 0.0052 0.0395 -0.0893 0.0040 0.0120 -0.1459 0.0099 0.0312 

2 -0.0711 0.0181 0.0231 -0.0370 0.0019 0.0033 -0.0411 0.0256 0.0273 

3 -0.0467 0.0490 0.0512 -0.0370 0.0011 0.0025 -0.0256 0.0580 0.0587 

4 -0.0427 0.0915 0.0933 -0.0335 0.009 0.0021 -0.0289 0.1016 0.1024 

5 -0.0348 0.1383 0.1395 -0.0258 0.0008 0.0015 -0.0287 0.1596 0.1604 

5 

1 -0.2022 0.0048 0.0457 -0.1350 0.0029 0.0211 -0.1639 0.0090 0.0359 

2 -0.0792 0.0155 0.0218 -0.0908 0.0013 0.0096 -0.0447 0.0235 0.0255 

3 -0.0451 0.0461 0.0481 -0.0853 0.0009 0.0082 -0.0325 0.0548 0.0559 

4 -0.0396 0.0850 0.0875 -0.0729 0.0009 0.0062 -0.0228 0.0990 0.0995 

5 -0.0409 0.1339 0.1355 -0.0554 0.0008 0.0039 -0.0921 0.1551 0.1559 
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Table (4)  estimates, =0.5, n=40. 

   /  BC



  
R



  W



  

bias var mse bias var mse bias var mse 

1 

1 -0.02994 0.0415 0.0424 0.7100 0.1534 0.6576 -0.0040 0.0494 0.0494 

2 -0.0101 0.2363 0.2364 1.7839 0.4017 3.5841 0.0378 0.3255 0.3269 

3 0.1360 1.5742 1.5925 3.0876 0.7756 10.308 0.2420 2.391 2.4491 

4 0.5204 7.7789 8.0489 4.4624 1.2683 21.181 0.8231 13.309 13.985 

5 0.8204 11.682 12.354 5.8685 1.6476 38.086 3.4 6514.9 6525.9 

2 

1 -0.2301 0.1415 0.1945 0.4595 0.3093 0.5205 -0.1232 0.2031 0.2182 

2 -0.1376 1.0942 1.113 1.4212 0.6314 2.6512 0.0569 1.8255 1.8286 

3 0.3452 10.42 10.538 2.424 1.0119 6.8878 0.6962 19.861 20.344 

4 1.7572 68.962 72.043 3.3525 1.4272 12.666 2.8626 260.65 268.82 

5 5.8406 672.21 706.26 4.1746 1.8189 19.246 8.636 2618.5 2692.8 

3 

1 -0.5476 0.2773 0.5771 0.0801 0.4255 0.4319 -0.3629 0.4568 0.5884 

2 -0.3810 2.6258 2.7707 0.5625 0.7665 1.0828 0.0265 5.0025 5.0026 

3 0.5422 28.924 29.215 0.8791 1.0988 1.8714 1.4217 69.189 71.204 

4 3.6613 266.14 279.51 1.1472 1.6192 2.9351 6.2167 1156.9 1195.4 

5 12.555 3212.4 33702 1.4344 2.3344 4.3915 26.15 96379 97053 

4 

1 -0.9445 0.4403 1.3325 -0.3842 0.5322 0.6798 -0.6827 0.7841 1.2502 

2 -0.7722 4.957 5.5529 -0.5818 0.8482 1.1866 -0.8546 9.7639 9.7702 

3 0.8342 63.213 63.902 -1.0523 1.2322 2.3394 2.3354 167.66 173.09 

4 6.6131 871.88 915.53 -1.4528 2.0768 4.1871 10.56 4071.9 4183 

5 25.118 13014 13644 -1.564 3.313 5.7041 40.175 1.3654e+5 1.3814e+5 

5 

1 -1.3785 0.6346 2.5348 0.9027 0.5956 1.4105 -1.0482 1.192 2.2905 

2 -1.2693 7.8739 9.4842 -1.9607 0.8609 4.7052 -0.1391 21.547 21.565 

3 1.3253 131.59 133.34 -3.2128 1.4091 11.731 3.1841 345.86 355.96 

4 9.8141 1.1745.8 1842 -4.1575 2.7474 20.032 17.577 10503 10811 

5 36.115 32502 33803 -4.4119 4.7644 24.229 92.119 2.0012e+6 2.0095e+6 
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Table (5) estimates for : =0.5, n=40. 

   /  BC



  R



  W



  
bias var mse bias var mse bias var mse 

1 

1 -0.0607 0.0235 0.0272 0.6062 0.0464 0.1439 -0.0406 0.0494 0.0510 

2 -0.0321 0.1061 0.1071 1.2732 0.0918 1.7128 0.0007 0.3255 0.3255 

3 0.0679 0.4054 0.4099 1.6657 0.1210 0.8957 0.1280 2.3908 2.4071 

4 0.2552 1.3786 1.4437 1.8756 0.1228 3.6408 0.4054 13.309 13.4733 

5 0.7139 17.488 17.996 1.986 0.1016 4.0459 1.6733 6514.9 6517.6999 

2 

1 -0.3375 0.0469 0.1609 0.1645 0.0516 0.0787 -0.2623 0.2031 0.2719 

2 -0.1523 0.4122 0.4353 0.8173 0.0969 0.7649 -0.0207 1.8255 1.8259 

3 0.1724 2.3507 2.3802 1.0472 0.1004 1.1969 0.3753 19.861 20.0018 

4 0.8204 11.682 12.354 1.1087 0.0773 1.3066 1.3745 260.65 262.5392 

5 2.3717 104.55 110.17 1.109 0.0633 1.2933 3.6614 2618.5 2631.9058 

3 

1 -0.8673 0.0741 0.8262 -0.4447 0.0552 0.253 -0.7157 0.4568 0.9690 

2 -0.3620 0.8741 1.0051 0.1212 0.0945 0.1092 -0.0779 5.0024 5.0084 

3 0.2808 6.2922 6.3704 0.1822 0.0793 0.1125 0.7710 69.189 69.7834 

4 1.6682 45.201 47.979 0.1750 0.0608 0.0914 2.9493 1156.9 1165.5984 

5 4.9459 520.56 544.97 0.1750 0.0569 0.0875 11.632 96379 96514.303 

4 

1 -1.5175 0.1115 2.4143 -1.1799 0.0605 1.4526 -1.3099 0.7841 2.4999 

2 -0.6646 1.5108 1.9523 -0.7014 0.0889 0.5809 -0.2025 9.7639 9.8049 

3 0.4385 13.164 13.355 -0.7623 0.0651 0.6462 1.2447 167.66 169.2092 

4 2.9453 149.13 157.79 -0.7770 0.0600 0.6638 4.9239 4071.9 4096.1448 

5 9.7744 2090.6 2186 -0.7024 0.0649 0.5583 16.763 13.654e+5 13.65681e+5 

5 

1 -2.239 0.1686 5.1816 -1.9866 0.0647 4.0113 -1.9757 1.192 5.0954 

2 -1.0262 2.3015 3.3544 -1.6015 0.0865 2.6512 -0.3147 21.547 21.6460 

3 0.6827 26.735 27.199 -1.735 0.0588 3.0689 1.7315 345.86 348.8580 

4 4.2631 291.53 30.9.67 -1.7024 0.0669 2.9651 8.0847 10503 10568.362 

5 13.919 5360.3 5553.5 -1.5062 0.0846 2.3534 41.771 2.0012e+6 2.0029e+6 
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Table (6) 1- ˆ
n  for the three test statistics with =1. 

/ 
                     Test  
Method  
of estimation  

n = 20 n = 40 n = 100 

A* W R A* W R A* W R 

1 

MLEBC 97.77 98.78 99.60 97.40 97.72 99.61 93.90 85.63 98.88 

MLER 99.62 14.52 14.58 99.78 1.83 1.98 99.99 0.0 0.0 

W 98.79 99.29 99.67 98.38 97.97 99.62 96.06 86.67 99.20 

Original-data 94.54 95.06 94.98 94.59 95.40 94.25 94.71 90.03 95.07 

2 

MLEBC 98.66 99.38 99.61 98.38 98.86 99.46 97.82 92.36 99.47 

MLER 96.56 79.77 80.27 97.04 64.41 64.74 95.95 29.59 33.35 

W 99.06 99.60 99.66 98.71 99.02 99.49 98.41 91.95 99.49 

Original-data 94.91 94.90 94.85 94.87 95.64 94.64 94.83 90.03 95.02 

3 

MLEBC 98.75 99.42 99.45 98.62 99.24 99.15 98.36 89.49 99.10 

MLER 94.23 93.80 93.70 95.27 94.60 94.37 94.47 87.16 90.82 

W 98.78 99.48 99.47 98.86 99.27 99.21 98.67 89.79 99.15 

Original-data 94.32 94.56 94.77 94.64 95.30 94.47 95.29 90.03 95.36 

4 

MLEBC 99.04 99.56 99.51 98.73 99.32 99.26 98.33 89.11 98.96 

MLER 94.34 94.74 94.55 94.92 95.91 95.31 94.76 90.61 95.20 

W 98.90 99.51 99.44 98.74 99.26 99.10 98.52 89.02 99.08 

Original-data 94.41 94.62 95.02 94.68 95.62 94.78 95.05 90.25 95.09 

5 

MLEBC 98.70 99.56 99.58 98.49 99.27 99.24 98.61 89.05 99.07 

MLER 94.44 94.47 94.76 95.03 95.64 94.63 95.12 90.36 95.04 

W 98.99 99.54 99.54 98.90 97.91 99.61 98.48 88.72 98.89 

Original-data 94.69 95.15 94.97 94.63 95.49 94.67 94.71 89.81 95.12 
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Table (7) 1- ˆ
n  for the three test statistics with =0.5. 

/ 

                     Test  
Method  
of estimation  

n = 20 n = 40 n = 100 

A* W R A* W R A* W R 

1 

MLEBC 97.44 98.67 99.42 95.87 96.45 99.07 89.16 79.43 97.29 

MLER 96.95 98.33 99.15 94.41 96.05 98.72 79.92 29.80 80.81 

W 98.83 99.50 99.81 98.09 97.91 99.61 94.90 82.80 98.69 

Original-data 31.40 24.33 32.30 4.09 1.09 2.87 0.0 0.0 0.0 

2 

MLEBC 98.63 99.36 99.47 98.40 99.15 99.25 98.24 91.85 99.39 

MLER 95.80 96.83 97.15 96.53 97.49 97.77 92.01 88.58 93.56 

W 99.01 99.53 99.67 98.87 99.39 99.31 98.60 91.77 99.26 

Original-data 68.44 63.89 67.81 40.81 28.40 35.15 3.52 0.26 1.25 

3 

MLEBC 98.67 99.35 99.56 98.58 99.18 99.30 98.44 89.49 99.22 

MLER 94.22 94.63 94.82 95.23 96.49 95.68 94.26 90.54 94.84 

W 99.05 99.64 99.55 98.71 99.30 99.21 98.35 88.37 98.78 

Original-data 81.56 78.89 80.53 66.07 59.34 61.28 27.76 15.09 19.98 

4 

MLEBC 98.87 99.45 99.64 98.56 99.16 99.09 98.36 89.01 99.23 

MLER 94.24 94.41 94.66 94.98 95.94 95.41 94.43 90.13 94.97 

W 99.11 99.65 99.66 98.90 99.41 99.82 98.49 88.79 98.94 

Original-data 86.10 84.83 85.87 77.89 73.74 73.94 50.99 40.88 43.06 

5 

MLEBC 98.72 99.43 99.46 98.38 99.09 99.05 98.49 88.98 99.10 

MLER 94.49 94.82 94.87 94.78 95.66 95.01 94.57 90.24 94.97 

W 98.93 99.48 99.42 99.02 99.39 99.30 98.62 88.80 98.97 

Original-data 89.64 88.61 89.07 83.17 80.80 80.26 64.72 58.08 58.06 
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Table (8) (1- ˆ
n ) for the three test statistics for positively skewed distributions 

Distribution 
1  2  

Method of 
estimation  

n = 20 n = 40 n = 100 

A* W R A* W R A* W R 

Weibull (3.3,5) 0.07791 2.7110 

MLEBC 98.68 99.38 99.77 98.27 98.63 99.59 97.82 91.33 99.64 

MLER 94.06 94.61 95.50 88.45 86.90 89.03 49.64 24.13 39.55 

W 99.14 99.61 99.78 98.65 98.85 99.61 97.85 91.57 99.65 

Original-data 94.81 95.78 96.87 94.65 95.30 96.92 94.16 88.71 97.46 

Weibull (3.3,10) 0.07791 2.7110 

MLEBC 98.51 99.33 99.68 98.31 98.75 99.80 97.67 91.31 99.52 

MLER 95.19 96.38 97.21 95.69 96.19 97.85 91.75 85.08 94.76 

W 98.90 99.55 99.74 98.71 98.97 99.83 97.96 91.85 99.62 

Original-data 94.78 95.89 96.56 95.19 95.79 97.16 94.20 89.23 97.41 

Gamma (16,5) 0.5 4.125 

MLEBC 98.73 99.50 99.38 98.70 99.21 99.31 98.47 89.35 99.08 

MLER 94.02 94.69 94.75 93.91 94.46 93.95 91.33 87.52 89.99 

W 98.93 99.58 99.49 98.98 99.38 99.35 98.63 89.22 98.95 

Original-data 89.32 88.54 88.89 85.20 83.32 82.01 68.50 62.89 61.97 

Gamma (16,10) 0.5 4.125 

MLEBC 98.88 99.55 99.62 98.62 99.35 99.19 98.49 88.91 98.98 

MLER 94.75 95.31 95.41 94.32 94.77 94.05 92.61 88.39 92.16 

W 99.11 99.66 99.56 98.76 99.38 99.24 98.77 88.44 99.16 

Original-data 90.22 89.44 89.78 84.79 82.84 81.22 67.87 62.59 61.76 

Weibull (2.1,5) 0.5672 3.1323 

MLEBC 98.67 99.32 99.56 98.19 98.68 99.66 97.43 91.34 99.67 

MLER 92.18 92.10 93.26 76.11 67.98 73.94 10.52 0.38 1.63 

W 99.04 99.48 99.62 98.66 98.92 99.67 98.11 91.34 99.66 

Original-data 88.44 87.20 83.84 79.97 74.49 78.43 49.09 27.71 42.61 

Weibull (2.1,10) 0.5672 3.1323 

MLEBC 98.31 99.32 99.69 98.11 98.69 99.48 97.74 91.32 99.68 

MLER 95.12 96.28 97.25 93.36 93.49 95.03 70.81 49.12 68.43 

W 98.74 99.51 99.73 98.48 98.81 99.52 98.11 91.48 99.64 

Original-data 87.66 86.73 88.67 78.73 73.34 76.78 49.00 28.46 42.64 
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Table (8) Continued 

Distribution  
1  2  

Method of 
estimation  

n = 20 n = 40 n = 100 

A* W R A* W R A* W R 

Gamma (9,5) 0.6667 5 

MLEBC 98.67 99.39 99.40 98.44 99.22 99.22 98.47 89.23 99.25 

MLER 94.32 94.67 94.66 93.51 93.84 92.43 86.08 82.84 83.27 

W 98.84 99.50 99.47 98.60 99.20 99.30 98.77 89.09 99.08 

Original-data 85.93 84.35 85.04 76.18 72.64 71.88 46.79 38.29 38.74 

Gamma (9,10) 0.6667 5 

MLEBC 98.66 99.41 99.50 98.79 99.37 99.25 98.52 89.54 99.13 

MLER 94.54 95.01 95.12 94.60 95.01 94.03 90.29 86.20 89.48 

W 99.04 99.53 99.66 98.70 99.37 99.24 98.58 89.38 99.02 

Original-data 85.84 84.58 85.44 75.79 72.48 71.47 46.29 38.65 39.39 

Gamma (4,5) 1 7.5 

MLEBC 98.65 99.42 99.56 98.55 99.16 99.34 98.60 89.76 99.26 

MLER 93.70 94.52 94.96 90.37 89.40 88.63 65.52 57.11 58.10 

W 98.88 99.51 99.56 98.92 99.32 99.47 98.80 89.85 99.33 

Original-data 73.44 70.12 72.54 52.29 43.96 47.72 10.62 4.49 6.69 

Gamma (4,10) 1 7.5 

MLEBC 98.69 99.40 99.50 98.65 99.19 99.32 98.67 89.37 99.36 

MLER 94.74 95.54 96.05 93.53 93.83 93.52 82.59 78.94 79.90 

W 98.92 99.59 99.57 98.78 99.14 99.18 98.69 88.82 99.28 

Original-data 73.87 70.21 72.48 51.44 42.99 46.02 10.73 4.69 6.56 

Lognormal 6.185 113.936 

MLEBC 98.84 99.52 99.57 98.84 99.31 99.23 98.40 88.79 98.91 

MLER 87.41 86.34 88.89 80.64 77.42 77.20 74.98 70.07 70.36 

W 99.06 99.60 99.58 98.94 99.38 99.24 98.54 88.77 98.87 

Original-data 8.91 6.35 8.54 0.21 0.05 0.14 0.00 0.00 0.00 
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Table (9) (1- ˆ
n ) for the three test statistics for the negatively skewed Wiebull distribution. 

              Criterion  
 
Method of  
estimation  

 

A* W R Distribution 

MLEBC 

n=20 

98.54 99.27 99.75 

Weibull (4.5,5) 

MLER 94.98 96.02 96.93 

W 98.89 99.49 99.76 

Original-data 93.92 94.75 95.45 

MLEBC 

n=40 

98.26 98.71 99.60 

MLER 93.67 93.73 95.40 

W 98.62 98.80 99.60 

Original-data 93.18 93.94 95.15 

MLEBC 

n=100 

97.57 91.66 99.64 

MLER 80.21 65.59 80.49 

W 98.16 91.43 99.67 

Original-data 90.00 85.54 94.14 

MLEBC 

n=20 

98.54 99.27 99.67 

Weibull (4.5,10) 

MLER 94.35 95.20 96.20 

W 98.98 99.38 99.68 

Original-data 94.32 95.05 96.08 

MLEBC 

n=40 

98.35 98.69 99.60 

MLER 94.91 95.59 96.93 

W 98.78 98.88 99.63 

Original-data 93.52 93.99 95.10 

MLEBC 

n=100 

97.56 90.72 99.55 

MLER 94.92 90.07 98.10 

W 98.09 91.49 99.62 

Original-data 90.08 85.39 93.97 
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Table (10) (1- ˆ
n ) for the three test statistics for the contaminated normal distribution. 

             Criterion  
 
Method of  
estimation  

 

A* W R 

MLEBC 

n=20 

94.92 96.65 93.79 

MLER 75.28 71.33 68.01 

W 95.23 96.71 94.12 

Original-data 74.72 70.84 67.36 

MLEBC 

n=40 

84.33 89.27 77.55 

MLER 62.17 58.41 46.65 

W 84.23 89.29 77.51 

Original-data 60.91 57.45 45.92 

MLEBC 

n=100 

52.61 62.13 37.25 

MLER 35.18 39.44 17.06 

W 52.71 61.62 36.89 

Original-data 33.19 37.77 15.96 
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ABSTRACT 

In this article, we present a new algorithm to compute the lower moments, product moments, 

variances and covariances of order statistics in continuous distributions, and for any sample size. 

The algorithm is written using the GAUSS Mathematical and Statistical System matrix 

programming language.  The accuracy of the calculations was tested for the normal, the uniform 

and the exponential distributions. As an application of the algorithm, exact computation of the 

population L-moments and the TL-moments will be given for all distribution studied. 
 

Keywords: Order statistics, L-moments, Simpson’s algorithm, Gauss-Legender quadrature 

algorithm, series approximations, recurrence relations 

 

1. INTRODUCTION 
 

Let X1 , X2 ,…, Xn be a random sample from an absolutely continuous distribution with 

cumulative distribution function (cdf) F(x) and probability density function (pdf) f(x), and let 

X(1), X(2), …,X(n) denote the order statistics obtained from this sample. The k
th

 moments of the 

order statistic X(r) is given by 
 

      
   

  

            
    

  
       

            
                                                       (1) 

 

Sen (1959) has shown that, if E|X|

 exists for some  > 0, then       

   exists for all r satisfying ro 

< r < n - ro + 1, where ro = k. The product moments between any two order statistics X(r) and 

X(s) , r < s; r, s=1,2,…,n, will be defined by             
  

                    
  . 

 

     
 

  

 

  
       

                
              

                   (2) 
 

The covariance of X(r) and X(s) r, s=1,2,…,n, will be given by 
 

                                                                         (3) 
 

If the population distribution is symmetric about 0, then 
 

                                                                                                                                      (4) 

                                                                                                                                  (5) 

                                                                                                                                (6) 
 

If the population distribution is symmetric about 0 and n is odd, then 

E(X(n + 1)/2 = 0      (7) 

mailto:osama52@gmail.com
mailto:ossama.abdelaziz@alex-commerce.edu.eg
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The moments of order statistics in random samples of small size n can be obtained explicitly 

only for a few simple populations, such as the uniform and the exponential. Tables of means, 

variances, and covariances are available in the literature for some standard distributions (Harter 

and Balakrishnan, 1996). The tables use different computation methods and some series 

approximations and they are available only for small sample sizes. We think that statisticians, 

somehow still believe on what Hirakawa claims in 1973 “moments of order statistics can be 

evaluated by numerical integration. But straightforward integration has shortcomings in view of 

quantity of computation and the accuracy”. 

Recurrence relations between the moments of order statistics have been studied extensively 

with the principal aim of reducing the number of independent calculations required for the 

evaluation of the moments. Such relations may also be used as partial checks on direct 

calculations of the moments. 

Davis and Stephens (1978) and Royston (1982), present algorithms to compute the moments 

and product moments of order statistics for small samples from the normal distribution. The 

Maple procedures presented by Childs and Balakrishnan (2002) utilizes the series 

approximations presented by David and Johnson (1954) to approximate the moments and 

product moments of order statistics for some continuous distributions. 

This paper presents a new algorithm for the computation of the moments, product moments, 

variances and covariances of order statistics in continuous distributions and for any sample sizes. 

The algorithm is written using the GAUSS Mathematical and Statistical System matrix 

programming language. The powerful numerical integration procedures in GAUSS plus the 

procedures for computing the cdf and the pdf for many distributions make this task attainable. 

The rest of this paper is organizes as follows. In Section 2 we review the basic computation 

methods used to compute the order statistics in the literature. Section 3 describes the proposed 

algorithm and some formulae that can be used for checking its accuracy. We compare the results 

of the proposed algorithm with the available table-values and approximations for the moments of 

order statistics from the normal distribution in Section 4. In Section 5 computation of the popula-

tion L-moments and the TL-moments using the proposed algorithm will be given for all distribu-

tion studied. Finally, conclusions and remarks for further studies are presented in Section 6. 

 

2. COMPUTATION METHODS 

 

There has been a large amount of work relating to moments and product moments of order 

statistics. See David and Nagaraja (2003) and Arnold et al. (1992).  We review in this section 

some of the basic approaches used in the literature.    

 

2.1 Explicit Forms 

 

Explicit forms exist only for a few simple distributions, such as the uniform and the exponential. 

The explicit form for the logistic case (see Gupta and Shah ,1965) depends on an asymptotic 

calculation of the digamma and trigamma functions. Calculation of the explicit expressions for 

the first moment for the extreme value distribution encounter numerical problems due to 

rounding errors in the evaluation even for moderate sample size (Fard and Holmquist,2007). 

Nadarajah (2008) derived explicit forms for the moments of order statistics from the normal, 
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lognormal, gamma and beta distributions. His expressions take the form of a finite sum of a 

special function that can be computed through numerical routines avaliable for Mathematica. 

 

2.2 Numerical Tables 

 

Early tables for the moments of order statistics are computed using numerical integration. The 

accuracy of the “good old tables” is high, at least for the expected values, as we will see in the 

next section. However, the existing tables are only done to a few distributions and for small 

samples only. For the standard normal the order statistics’ means have been tabulated extensively 

in (Harter, 1961). Variances and covariances for n < 20, are tabulated in (Teichroew,1956) ,and  

(Sarhan and Greenberg ,1956) and for n ≤ 50 , in (Tietjen et al., 1977).   

 

2.3 Recurrence Relations 

 

Many authors have studied recurrence relations between the moments of order statistics. Their 

aim often was to reduce the number of independent calculations required for the evaluation of 

the moments. Numerous recurrence relations have been developed for specific distributions. 

Such relations may also be used as partial checks  to direct calculations of the moments. The 

following general relations, given by David and  Nagaraja (2003) will be used to check the 

accuracy of the new proposed algorithm. 

 

( )

1

( ) (8)
n

r

r

E X n


                                                                                

2 2

( )

1

( ) ( )                                                                              (9) 
n

r

r

E X nE X


  

n n
2 2

(r) ( )

r=1 s=1

E(X ) ( ) ( 1)                                                (10)  sX nE X n n     

n n
2

(r) ( )

r=1 s=r+1

1
E(X ) ( 1)                                                              (11)  

2
sX n n    

n n
2

(r) ( )
r=1 s=1

cov(X )                                                          (12)   sX n  

 

2.4 Approximations in Terms of the Quantile Function and its Derivatives 

 

Quantile function based approximations are presented  by David and Johnson (1954). They 

present results to order (n + 2)
-3

 for all the first four cumulants and cross cumulants. By the 

probability integral transformation U(r)= F(X(r)) , were U(r) is  the rth order statistics in a sample 

of n from a uniform (0,1) distribution. Writing X(r) = Q(U(r)), where Q = F
-1

, and U(r)= F(X(r)), is  

the uniform (0,1) rth order statistics then expanding Q(U(r)) in a Taylor series about E(U(r)) = 

r/(n+1)pr one gets 
 

     X(r) = Q(pr) + (U(r)-pr)Q'(pr) + 0.5(U(r)-pr)
2
 Q"(pr) + (1/6)(U(r)-pr)

3
Q'"(pr) + ...      (13) 
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Replacing Q(pr) by Qr and setting qr=1-pr we obtain to order (n+2)
-2 

" "' ""

( ) 2

1 1
( ) [ ( ) ]                    (14)

2( 2) ( 2) 3 8

r r r r

r r r r r r r r r

p q p q
E X Q Q q p Q p q Q

n n
    

 
 

          

' 2 ' " ' "' " 2

( ) 2

1
var( ) [2( ) ( )]

( 2) ( 2) 2
(15)                              r r r r

r r r r r r r r r r r

p q p q
X Q q p Q Q p q Q Q Q

n n
    

 
 

        

' ' ' " ' "

( ) ( ) 2

' "' ' "' " "

cov( , ) [( ) ( )
( 2) ( 2)

1 1 1
                            ]  (16)

2 2 2
                                  

r s r s

r s r s r r s r s s r s

r r s r s s r s r s r s

p q p q
X X Q Q q p Q Q q p Q Q

n n

p q Q Q p q Q Q p q Q Q

     
 

 

 

 

2.5 Algorithms 
 

Davis and Stephens (1978) present a FORTRAN procedure to approximate the covariance matrix 

of order statistics from a normal distribution. Their procedure requires the user to supply values 

of Var(X(n)). Royston (1982), present a FORTRAN procedure to calculate the first moment of 

order statistics from a normal distribution. The calculation error is 0.001 for n < 50.  

Next we write a procedure in GAUSS to compute the approximations given by (14)-(16) for 

the normal distribution. This procedure utilizes numerical integration procedures, can be applied 

to many continuous distributions and perform better than the procedures depend on the quantile 

approximation.  

 

3. THE PROPOSED NUMERICAL INTEGRATION ALGORITHM 

 

The proposed algorithm computes the k
th

 moment, the product moments, variances and 

covariances of order statistics from a continuous distribution with a very high accuracy. This 

level of accuracy will be at least as good as the available tabulated values, if exist even in large 

sample size. For most values of n, r and s one cannot obtain the required level of accuracy in 

computation of (1) or (2) unless F(x) and f(x)  are evaluated  with a high level of accuracy.  The 

evaluation of F(x) for many distributions depends on some mathematical approximation. The 

major mathematical programming languages provide mathematical approximation procedures to 

compute F(x) for many distributions. Ideally, such procedure will provide accuracy essentially to 

“machine precision”. This means that the combined effect of error introduced by the use of the 

mathematical approximation and rounding error in computation is negligible. The proposed 

algorithm uses those procedures many times to evaluate the numerical integrations involved in 

calculating….. Thus, the overall level of accuracy is very difficult to achieve, (see Kennedy and 

Gentle, 1980).  Most of the advanced mathematical programming languages have high accuracy 

procedures to compute F(x) for many distributions and very high accuracy procedures for 

numerical integrations. This makes it possible to produce a high overall accuracy algorithm to 

compute (1)-(3). 
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Reasoning for Using the programming language GAUSS in the Algorithm 

 

The GAUSS Mathematical and Statistical System is a fast matrix programming language 

designed for computationally intensive tasks. In a comparison of major mathematical program: 

Mathematica, Matlab, Maple, and Gauss, Steinhaus (2008) ranked Gauss second only to 

mathematica in the comparison of mathematical functions included numerical approximations, 

distribution functions and basic mathematical functions. Gauss includes high level accuracy 

procedures to compute F(x) for many distributions. Powerful and flexible procedures for double 

numerical integration are also available with very high accuracy. The matrix programming 

makes many programming tasks easy and fast. 

 

3.1 The Steps of the Algorithm 

 

3.1.1 Specify the Sample Size 

 

For large samples, n > 169,  
 
 
  cannot be computed directly. An asymptotic expansion of ln(n!) 

called the Stirling’s series will be used for n > 169. It is given by  
 

               
 

 
        

 

        
 

 

            
 

 

               
 

 

               
   

 

The error in truncating the series is always of the same sign and at most the same magnitude as 

the first omitted term, (see Abramowitz and Stegun, 1965).  

 

3.1.2 Specify the Probability Distribution 

 

The available distributions so far are: standard normal, student’s t, beta, gamma, extreme value, 

uniform, exponential and the logistic. If the distribution is symmetric (about 0) and n is odd the 

calculation of the moments will be simplified because of (3) and (4). The inverse Gaussian, 

Pareto, and the generalized lambda distribution will be added.  

 

3.1.3 Specify the Higher Moments (Optional) 

 

The default of the algorithm is to compute the expected value and the covariance matrix of order 

statistics. The user should specify a value of k > 2 to evaluate a higher moments.  

 

3.1.4 Specify the Accuracy Level for Numerical Integrations (Optional) 

 

Any numerical integration procedure approximates        
 

 
  where the limits of integration a 

and b are finite. This is not true for (1) and (2) for most of the distribution. So we set a = F
-1

(p1) 

and b=F
-1

(p2). Typically,   p1 =0.000001 =1-p2. The user can change those limits to get different 

level of accuracy. To compute E(X(r)) and Var(X(r)) , r= 1,2,…,n we uses the adaptive Simpson’s 

algorithm for numerical integration (intsimp procedure of Gauss 9.0) with tolerance limits 

0.00000001. In the adaptive process, we divide the interval [a,b] into two subintervals and then 

decide whether each of them is to be divided into more subintervals. The procedure is continued 

until some specified accuracy is obtained throughout the entire interval [a,b]. The Gauss-
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Legender quadrature algorithm (intquad1 procedure of Gauss 9.0) allows accurate and fast 

integration for many functions, but it is not adaptive to yield any level of accuracy as the intsimp 

procedure, (see Gauss 9.0 Language Reference, (2007)). 

For the product moments the double integration limits will be             
 

 

 

 
 with the same 

definition of a and b as before. The Gauss-Legendre quadrature algorithm for double numerical 

integration (intgrat2 procedure of Gauss 9.0) will be used.  This procedure allows integrating 

over a region which is bounded by functions, rather than just scalars as the intquad2 procedure. 

 

3.1.5 Recurrence Relations Check (Optional) 

 

The algorithm may check the accuracy of the general recurrence relations given by equations 

(6)–(10) above. Other recurrence relations checks for some specific distributions will be added to 

the algorithm. This will be useful when no tabulated values are available, e.g. the beta 

distribution and the student’s t distribution. 

 

3.1.6 Output 

 

 a-The vector of expected values E(X(r)) , r= 1,2,…,n. 

 b-The covariance matrix of order statistics                 ;  r, s = 1,2,…,n. 

 c- Higher order moments (optional). 

 d- A check for the accuracy by recurrence relations (optional). 

 

3.2 Time and Accuracy 

 

The execution time is directly proportional to the sample size. The following table represents the 

execution time for the normal distribution.  

 

N=50 N=100 N=500 N=1000 

7 :27 seconds 31:28 seconds 14:17:1 minutes 21:47:3 minutes 

 

The approximate series algorithm is much faster than the new algorithm specially for large 

samples, but it is much less accurate. The new algorithm is accurate to at least 15 decimal places. 

The accuracy is always higher for the expected value than for the covariance matrix. For very 

large sample sizes (n>1000 in most of the cases) one may have to sacrifies high accuracy of the 

numerical integration by reducing tolerance limits or limits of integration  for the convergance of 

the integration. A detailed study of the accuracy will be given for the standard normal 

distribution only. 

 

3.3 Exponential and Uniform Checks 

 

It is well known that the moments of order statistics for the exponential and the uniform 

distributions have explicit forms. So, we can verify the accuracy of the algorithm by comparing 

the results of the algorithm to the exact values for those distributions. For the standard 

exponential distribution with pdf  f(x)  = exp(-x), x >0, the moments of order statistics are given 

by 
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                          (17) 

 

                                                  
 

        
 
                                                                   (18) 

 

                                                                                                                    (19) 
 

For the uniform distribution U(0,1) the moments of order statistics are given by   
 

                                                    
 

   
                                                                     (20) 

                                                 
    

   
                                                                          (21) 

 

where  pr=
 

   
 , and qr=1-pr.  Define 

 
         calculated by the algorithm, r=1,2,…,n. 

 

  
 
        calculated by the explicit form, (17) or (20),  r=1,2,…,n. 

                 
            calculated by the algorithm, r=1,2,…,n. 

                             
            calculated by the explicit form,(18) or (21),  r=1,2,…,n. 

 

           MAXDmue = 
*

max
r r

r
 

        
         MAXDsgma = 2* 2

max r r

r
   

 

Table (1) shows the difference between the new algorithm calculation with the exact moments 

for the exponential distribution for n =2(2)8. For n=100, MAXDmue is 4.96565E-05 at r=98. 

While, the MAXDsgma is 4.83715E-05 at r=98. Table (2) calculates MAXDmue and 

MAXDsgma for the uniform distribution at selected sample sizes.  One may conclude that the 

algorithm computation for the uniform and the exponential moments are accurate , except for a 

very small rounding error.  

 

4. ACCURACY OF COMPUTATION FOR THE NORMAL DISTRIBUTION 

 

We limit the accuracy of computation of the moments to the case of the standard normal 

distribution. The accuracy for the logistic, gamma, beta, extreme value and the student’s t 

distributions will be presented in a forthcoming article,  The existing tables for the above 

distributions either do not exist or incomplete (for the expected values only or for small sample 

sizes only).  

 

4.1 Comparison with the Tabulated Values and the Series Approximation 

 

For the tabulated expected values we used the tables of Harter (1961). The Harter’s tables have 5 

decimal places accuracy for all r and for selected sample sizes  ≤400. The tabulated variances 

and covariances of order statistics of sample sizes up to 20, to 10 decimal places, were given by 

Sarhan and Greenberg (1956). Covariances for n ≤ 50 to 10 decimal places are given by Tietjen 

et al. (1977). Parrish (1992) presents tables of the variances and covariances to 10 decimal places 

for n ≤50. Tiechroew (1956) calculated the f(x) and F(x) for the standard normal distribution for 

x=-12(0.02)12. We use the same values -12 and 12 as limits for the numerical integration for the 

expected values and the variances. We, also use the same limits, -12 and 12, for the numerical 

double integration to compute the covariances. The available tables for the covariances seem to 

use smaller limits. See Table (5) below. 
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The series approximation of David and Johnson (1954) can be computed for any sample size. We 

wrote a procedure in GAUSS to compute the series approximations, given by (13)-(16),  for the 

standard normal distribution. This approximation procedure is very fast and can be applied to 

any sample size.  

 

Table (1):  Differences between the moments calculated by the algorithm and the exact moments 

for the exponential distribution. n=2(2)8. 

n i mue difference variance difference 

2 1 0.500000031 3.07429E-08 0.249999949 -5.12004E-08 

2 2 1.499999828 -1.71516E-07 1.249998699 -1.30084E-06 

4 1 0.250000021 2.07088E-08 0.062499979 2.45628E-07 

4 2 0.583333303 -3.0227E-08 0.17361115 1.50049E-07 

4 3 1.083333336 5.77447E-09 0.423611104 1.04223E-07 

4 4 2.083333132 -1.97594E-07 1.423608768 -2.2323E-06 

6 1 0.16666666 -7.11021E-09 0.027777765 -1.30238E-08 

6 2 0.36666659 -7.68074E-08 0.067777834 5.66294E-08 

6 3 0.616666667 5.00215E-10 0.130277777 -8.25173E-10 

6 4 0.949999988 -1.18248E-08 0.241389032 1.42918E-07 

6 5 1.450000065 6.52578E-08 0.491388709 -1.79483E-07 

6 6 2.449999742 -2.57948E-07 1.491384686 -4.20264E-06 

8 1 0.125000001 6.93517E-10 0.015624995 -5.26161E-09 

8 2 0.267857107 -3.56116E-08 0.036033183 2.01492E-08 

8 3 0.434523812 2.79872E-09 0.063810938 -3.24522E-09 

8 4 0.634523808 -1.26048E-09 0.103810953 1.21252E-08 

8 5 0.88452382 1.08188E-08 0.166310922 -1.85654E-08 

8 6 1.217857143 3.20937E-10 0.277422045 -7.01215E-09 

8 7 1.71785714 -2.52425E-09 0.52742206 7.79245E-09 

8 8 2.717856796 -3.46394E-07 1.527416632 -5.4204E-06 

 

 

Table (2): The maximum absolute differences between the new algorithm calculations with the 

exact moments for the uniform distribution. 

Sample size MAXDmue MAXDsgma 

10 2.86139090199811e-009 4.32870374007105e-009 

50 1.93867591202768e-007 1.72401465628426e-007 

100 2.16414286491329e-007 4.02522250497446e-007 

500 2.10522026498706e-005 2.17208716083794e-005 

 

 

Define 
 
         calculated from Harter’s tables r=1,2,…,n. 

  
 
         calculated by David Johnson approximation,    r=1,2,…,n. 

      MAXDm1=      
  

 
  

 
 

              MAXDm2 =       
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Table (3) computes MAXDm1 and MAXDm2 for selected sample sizes.  This shows that the 

algorithm computations for the expected values are very close to the tabulated values. This 

means that it is more accurate than the approximation procedure of  David and Johnson (1954). 

 

 

Table (3): The maximum absolute differences between the new algorithm calculations and the 

tabulated and approximated means for the normal distribution. 

Sample size MAXDm1 MAXDm2 
10 3.33203E-10  (r=2) 0.0007881025758 (r=2) 

20 -8.9508E-10     (r=10) 0.002518972095   (r=1) 

50 5.07898254498151e-006 (r=6) 0.00334367073    (r=1) 

100 5.1140069301514e-006  (r=7) 0.003416387866        (r=1) 

 

 

Define  
            calculated from the tables r=1,2,…,n. 

 

            
            calculated by David Johnson approximation,   r=1,2,…,n. 

                 MAXDs1=      
    

           MAXDs2 =       
    

    
 

Table (4) computes MAXDs1 and MAXDs2 for selected sample sizes. The algorithm 

computations of the variances are very close to the tabulated values. Hence, it is more accurate 

than the approximation procedure of  David and Johnson (1954). 

 

Table (4). The maximum absolute differences between the new algorithm calculations and the  

tabulated and approximated variances for the normal distribution. 

 

Sample size MAXDs1 MAXDs2 
10 1.9412E-11    (r=2) 0.01214077653   (r=1) 

20 9.477E-10     (r=2) 0.006664613847   (r=1) 

50 Not computed 0.004339938323     (r=1) 

100 Tabulated values not available. 0.003873108374      (r=1) 

 

Let COV(X()) denote the covariance matrix of order statistics. The elements of COV(X) are 

defined by (3). Define  

 V
*
 =COV(X()) calculated by the algorithm, 

 V
A
= COV(X()) calculated by David Johnson approximation,  

 V
T
=COV(X()) calculated by the tables, 

             MAXV1=              
        MAXV2  =               

      
 

Table (5) computes MAXV1 and MAXV2 for selected sample sizes.  It shows that the tabulated 

covariances use small limits for double numerical integration (-6, 6). The algorithm uses more 

accurate limits (-12, 12). Moreover, the algorithm uses 15 decimal places. Note that max|V
T
-

V
A
|= 0.854803190653206 for n=20. We can conclude that the algorithm gives more accurate 

computations for the means, variances and covariances of order statistics for the normal 

distribution.  
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Table (5) MAXV1 and MAXV2  for selected sample sizes 

 

Sample size limits of 

integration 

MAXV2   MAXV1 

10 (-12,12) 0.0885097147486911  (7,1) 

0.08794242992 (7,1) 
(-6,6) 0.000290172417513175 (10,1) 

20 (-12,12) 0.971226179420447    (6,2) 
0.3759743329 (8,1) 

(-6,6) 0.854814523292793  (6,16) 

50 Not computed. 1.519450143 (5,1) 

100 Tabulated values not available. 3.694929265  (9,1) 

 

 

4.2 The Recurrence Relations 

 

The basic moments identities (8)-(12) will be used as partial checks on the algorithm calculations 

of the moments at least for moderate sample sizes. For very large sample size possible 

accumulation of rounding error could arise in the computation of the relations. For the standard 

normal distribution (8)-(12) will be reduced to 

        
( )

1

( )
n

r

r

E X


  = 0
 

                    

( ) ( )
1 1

,    cov( )
n n

r s
r s

X X n
 



 
Table (6) computes the above relations for selected sample sizes. This shows that the identities 

are satisfied for all sample sizes. Tabulated values and series approximation are available for the 

gamma, logistic and extreme value distribution. So, the same checks for accuracy of the 

algorithm computations can be applied. Accuracy verifications for other distributions will be 

conducted in a forthcoming research paper. 

 

 

Table (6) Recurrence relations check 

n ( )

1

( )
n

r

r

E X


   
n n

(r) ( )

r=1 s=1

cov(X )sX n  

10 4.44089209850063e-016 2.1387336346379e-012 

20 -1.77635683940025e-015 -7.06386060755904e-011 

50 -6.21724893790088e-015 -3.25504601050852e-009 

100 4.88498130835069e-015 1.84653003998392e-009 

500 9.10382880192628e-016 27.8387111808675 

 

 

5. APPLICATIONS 

 
If X1,X2,..., Xn are iid with density f(x), then the order statistics are complete and  sufficient, see 

Lehmann and Casella (1998) pages 36 and 72. Thus many minimum variance unbiased 
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estimators (UMVUEs) and powerful test procedures for the unknown parameters were 

constructed based on order statistics. For the location-scale family of absolutely continuous 

distributions F(x) = G((x-)/) (>0) Lloyd (1952) proved that the weighted least squares 

estimators for  and  based on expected values and covariance matrix of the order statistics are 

Best Linear Unbiased Estimators (BLUEs). Lloyd's procedure requires full knowledge of the 

expectations and the covariance matrix of the order statistics. David and Nagaraja (2003) page 

198 stated that “The covariances especially may be difficult to determine”. This shows the 

important of the new algorithm since Lloyed’s estimators are applied extensively for many 

distributions from complete and censored samples. 

For the location-scale family a class of regression goodness of fit tests is based on the model 
 

            X(i) =  +  E(X(i)) + i ,  i = 1,2,…, n                                                          (22) 
 

D’Agostino and Stephens (1986), page197, stated that “The values of E(X(i)) are the most natural 

values to plot along the horizontal axis (in a p-p plot), but for most distributions they are difficult 

to calculate”. In a forthcoming paper we will study the effect of our calculated moments of order 

statistics on the regression based goodness of fit tests, including the correlation test and the 

Shapiro-Wilk test. 

Another important application of the algorithm is the computation of the population L-

moments and Tl-moments. Hosking (1990 ) define  L-moments m  by  
 

 
1

;

0

11
( 1)

m
j

m m j m

j

m

jm
 







 
   

 


                                                                       (23)

 

 

where ; ( )( )r n rE X    from a random sample of size n. Hosking (1992) tabulates formulae 

giving 1, 2,  3,  4 for some common distributions. An extra procedure in the algorithm will 

compute the population L-moments, m=1,2,… from any continuous distribution. The first 10 L-

moments for the normal, logistic, beta(8,5), extreme-value, gamma(4) and the exponential 

distributions are given by Table (7).  

 

 

Table (7) Population L-moments 

m normal logistic beta(8,5) uniform extreme gamma(4) exponential 

2 0.56419 0.999001 0.073806 0.166567 0.692648 1.09375 0.496981 

3 0 0 -0.00325 -0.001e-9 -0.11728 0.180097 0.163652 

4 0.069171 0.165668 0.007521 -0.001e-9 0.103733 0.143557 0.080319 

5 0 0 -0.00091 -0.001e-7 -0.03823 0.055989 0.046994 

6 0.02463316 0.670735 0.00244210 -0.001e-7 0.03978 0.05286 0.030327 

7 0 0 -0.00041 -0.001e-7 -0.01865 0.027012 0.020812 

8 0.012324 0.034717 0.001146 -0.001e-6 0.020681 0.02705 0.01466 

9 0 0 -0.00023 -0.001e-6 -0.01091 0.01586 0.010908 

10 0.0073138 0.021225 0.00064733 -0.001e-6 0.012522 0.01633 0.008128 
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The sample L-moments are sensitive to outliers. Elamir and Seheult (2003) introduce a robust 

generalization to the L-moments called trimmed L-moments (TL-moments). The TL-moments 

allows for different proportion of trimming from each tail. This is more suitable for skewed 

distributions. The TL-moments is defined by 
 

              
     

 

 
         

    
   

 
 

              
                                                       (24) 

 

This form allows for different proportion of trimming from each tail. Table (8)  computes the 

first 10 population TL-moments with t1=t2=1.  Table (9)  computes the first 10 population TL-

moments with t1=t2=2.  In both tables we consider the normal, logistic, beta(8,5), extreme-value, 

gamma(4), and the exponential distributions.  

 

Table (8) Population TL-moments (t1=t2=1) 

m normal logistic beta(8,5) uniform extrem gamma(4) exponential 

2 0.297011 0.499999 0.039771 0.10000 0.353349 0.570116 0.249997 

3 0 0 -0.0011134 6.5114e-8 -0.037646 0.059099 0.055551 

4 0.01855726 0.041666 0.00211630 1.4666e-7 0.026647 0.03779 0.020831 

5 0 0 -0.0001899 2.0536e-7 -0.007475 0.011064 0.009995 

6 0.00441879 0.011110 0.00046528 3.5221e-7 0.006855 0.009265 0.005629 

7 0 0 -6.2081e-5 4.7351e-7 -0.002652 0.003823 0.003395 

8 0.00165765 0.004464 0.00016497 7.2062e-7 0.002699 0.003547 0.002229 

9 0 0 -2.72595e-5 9.3701e-7 -0.001233 0.00175 0.001506 

10 0.00078620 0.002221 7.4867e-5 1.3631e-6 0.001326 0.001709 0.0011 

 

Table (9) Population TL-moments (t1=t2=2) 

m normal logistic beta(8,5) uniform extreme gamma(4) exponential 

2 0.20154683 0.333333 0.02719850 0.071429 0.237165 0.385631 0.166666 

3 0 0 -0.0005615 -5.71E-08 -0.018499 0.029352 0.027778 

4 0.00763964 0.016666 0.00088707 -6.94E-08 0.010761 0.015448 0.008298 

5 0 0 -6.42907e-5 -8.37E-08 -0.002450 0.003665 0.003334 

6 0.00130438 0.003174 0.00014074 -1.05E-07 0.001978 0.00271 0.001587 

7 0 0 -1.5829221 -1.72E-07 -0.000625 0.000951 0.000861 

8 0.00038117 0.000992 3.90490e-5 -2.15E-07 0.000605 0.000807 0.000498 

9 0 0 -5.57974e-5 -3.25E-07 -0.000243 0.000348 0.000304 

10 0.00014800 0.000404 1.45540e-5 -4.26E-07 0.000243 0.000318 0.000278 

 

6. COMMENTS AND CONCLUSION 
 
The new algorithm facilitates the computation of the moments of order statistics for any sample 

size and for many continuous distributions. The accuracy for the logistic, gamma, beta, extreme 

value and the student’s t distributions will be presented in a forthcoming article,  The existing 

tables for the above distributions either do not exist or incomplete (for the expected values only 

or for small sample sizes only). Also, the inverse Gaussian, Pareto, and the generalized lambda 
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distribution will be added and another algorithm will be written for discrete distributions. The 

algorithm still needs improvement especially for the computation of the covariances.  

The proposed procedure for calculating the moments of order statistics can improve the 

statistical analysis in  many applications: Lloyd’s weighted least squares estimators for the 

location scale family, linear estimators for censored samples from any continuous distribution, 

regression based goodness of fit tests and regression based power transformation. 
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ABSTRACT 

 

This paper proposes nonparametric regression model to analyze longitudinal data. We combine 

natural cubic spline with generalized estimating equations (GEE) to handle unknown function of 

the covariate and accounting for the correlation within subjects. Specific condition in which we 

assume independence, AR-1 and exchangeable correlation structures from each subject with 

varying sample size are used in the simulation study to assess the efficiency of the estimators.  A 

real data application of the proposed model is illustrated with comparison to parametric model 

and GEE-smoothing spline under independence assumption. 

 

Keywords: longitudinal data; nonparametric regression; correlation, generalized estimating 

equations; smoothing spline 

 

1. INTRODUCTION 

 

It is very common in economics, epidemiology or clinical trials to make a study on subjects who 

are followed over time or several occasions to collect response variables, which is commonly 

known as longitudinal study. The characteristic of these data is that they are no longer indepen-

dent, in which there is correlation within subject measurements.  Another characteristic is that 

the variances are usually not homogeneous.  Thus methods in the class of generalized linear 

model (GLM) are no longer valid for these data, since GLM assumes that observations are 

independent. Some developments have been proposed to analyze such data that can be classified 

into three types of model, marginal model, subject specific effect, and transition model (Davis, 

2002). In the class of marginal model, Liang and Zeger (1986) and Zeger and Liang (1986) 

extended quasi-likelihood estimation of Wedderburn (1974) by introducing “working correla-

tion” to accommodate within subject correlation, which is called generalized estimating equation 

(GEE).  GEE yields consistent estimates of the regression coefficients and their variances even 

mailto:nakma@putra.upm.edu.my
mailto:suliadi@gmail.com
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though there is misspecification of the working correlation structure, provided the mean function 

is correctly specified.   

GEE is part of the class of parametric estimation, in which the model can be stated in a linear 

function and the function is known.  Very often the effect of the covariate cannot be specified in 

a specific function. Nonparametric regression can accommodate this problem by relaxing the 

relationship between covariate and response.  In nonparametric regression, we assume that the 

effect of the covariate follows an unknown function without specific term that is just a smooth 

function.  To date there are several methods in nonparametric regression, for example: local 

polynomial kernel regression, penalized splines regression, and smoothing splines. Green and 

Silverman (1994) gave a simple algorithm for nonparametric regression using cubic spline with 

penalized least square estimation.  They also gave nonparametric and semiparametric methods 

for independent observations for a class of generalized linear models. 

Some developments of nonparametric and semiparametric regression for longitudinal or 

clustered data have been achieved. Lin and Carroll (2000) considered nonparametric regression 

for longitudinal data using GEE-Local Polynomial Kernel (LPK). They showed that for kernel 

regression, in order to obtain an efficient estimator, one must ignore within subject correlation. 

This means within subject observations should be assumed independent; hence the working 

correlation matrix must be an identity matrix. This result was definitely different from GEE of 

Liang & Zeger’s, in which the GEE estimator was consistent even there is a misspecification of 

the true correlation taken as a working correlation. Lin and Carroll (2001) also studied the 

behavior of local polynomial kernel which was applied to semiparametric-GEE for longitudinal 

data. The result was the same as in nonparametric GEE-LPK in Lin and Carroll (2000). Welsh et 

al. (2002) studied the locality of the kernel method for nonparametric regression and compared it 

to P-splined regression and smoothing splines. The result was that the kernel is local even when 

the correlation is taken into account.  The result was different for smoothing splines, in which if 

there is no within subject correlation then smoothing splines is local, and if within subject 

correlation increases, than smoothing splines become more nonlocal. This implies that for 

smoothing splines, within subject correlation must be taken into account in the working 

correlation. 

This paper considers nonparametric regression to analyze longitudinal data. We propose 

GEE-Smoothing spline in the analysis and study the properties of the estimator numerically.  We 

use natural cubic spline and combine  this with GEE of Liang & Zeger’s in the estimation.  

Simulation study is carried out to investigate these properties. 

The outline of this paper is follows.  We give a short review of GEE in section 2.1.  Section 

2.2 provides a brief review of smoothing splines.  The algorithm of the proposed method is 

discussed in section 3.1.  Section 3.2 considers smoothing parameter selection.  Properties of 

GEE-smoothing spline estimator using simulation is given in Section 4. Section 5 demonstrates 

the application of the proposed method to a real data set followed by the conclusion and 

discussion in Section 6. 

 

2.  GENERALIZED ESTIMATING EQUATION AND SMOOTHING SPLINES 

 

2.1  Generalized Estimating Equation 

 

Suppose there are n subjects, and the i-th subject is observed ni times for the responses and 

covariates.  Let yi = (yi1, yi2, …, yi,ni)
T
 be the ni x 1 vector of  response variable and Xi = (xi1, …, 
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xini)
T
 be ni x p matrix of covariate for the i-th subject, and xij = (xij1, xij2, …, xijp)

T
.  It is assumed 

that the marginal density of yij follows the exponential family with probability density function 
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The first two moments of yij are 
ijijij

)('b)y(E     and )(a)(''b)y(Var
ijij

 , where ij is a 

canonical parameter.  It is assumed that between subjects, observations are independent. The 

relationship between  and covariates is through the link function g(ij) = ij with ij = x
T

ij ,   

where  = (1, 2, …, p)
T
 is a  p x 1  vector of regression coefficient.   

 

Generalized estimating equation to solve  was given by Liang and Zeger (1986) as follows: 
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Ai is an ni x ni diagonal matrix with diagonal elements
ijij

/   .   R() is also called a 

“working correlation”, a ni x ni symmetric matrix which fulfills the requirement of being a 

correlation matrix, and Si = yi - i, with yi=(yi1, yi2, …, yini)
T
 and i=(i1, i2, …, ini)

T
.  The 

estimating equation (1) is similar to the quasi-likelihood estimating equation, except the form of 

Vi.  Thus it can be seen as an estimating equation of   by letting  as the “quasi-likelihood” 

score function of the y1, …, yn.  Solution of  can be obtained by minimizing  over .  Thus, 
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Liang and Zeger (1986) gave the iterative procedure using modified Fisher scoring for  and the 

moment estimation method of  and .  Given the current estimates ̂  and ̂  then the iterative 

procedure for  is 
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where ))}β(ˆ,β(,β{V
~

)β(V
~

ii  . The close form of moment estimator for  and  for some 

correlation structures can be seen in Liang & Zeger (1986).  

 

2.2  Smoothing Spline 

 

Green and Silverman (1994) gave a simple approach in estimating smooth function f using 

natural cubic splines.  Suppose given real numbers t1, …, tn on the interval [a, b] satisfying a < t1 

… < tn < b.  A function f on [a, b] is cubic spline if two conditions are satisfied.  First, f is cubic 

polynomial on each interval (a, t1), (t1, t2), …, (tn, b);  second,  the polynomial pieces fit together 

at the points ti in such a way that f  itself and its first and second derivative are continuous at each 
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ti, thus the function is continuous on the whole of [a, b].  The function is said to be natural cubic 

spline (NCS), if its second and third derivative are zero at a and b.  Suppose fi = f(ti) and i = 

f’’(ti) for i = 1, 2, …, n.  By definition of NCS, the second derivative of f at t1 and tn is zero, so 1 

= n = 0.  Let f  = (f1, f2, …, fn)
T

 and  = (2, …,  n-1)
T
.  Vector  is numbered in non standard way, 

starting at i = 2.  The vector f and vector  completely specify the curve f.  These two vectors are 

related and specified by two matrices Q and R defined below. 

Let hi = ti+1 – ti, for i = 1, 2, …, n-1.  Let Q be the n x (n-2) matrix with elements qij,   i = 1, 

.., n, and j = 2, …, n-1, with 1

jj,1j

1

j

1

1jjj

1

1jj,1j hq,hhq,hq 









   and 
  

The R matrix is defined as follows.  

The symmetric matrix R is (n-2) x (n-2) with elements rij, for i and j running from 2 to (n-1), given by 

 

 
1, .., n-3, 2 i,6/hrr
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Matrix R and Q are numbered in non standard way.  The matrix R is strictly diagonal dominant, 

in which |rii| > ij|rij|.  Thus R is strictly positive-definite, hence R
-1

 exists.  Defined a matrix K 

by 

 K = QR
-1

Q
T
  (3) 

 

One important result is the theorem given by Greean & Silverman (1994)as stated below: 

 

Theorem.  The vector f and  specify a natural cubic spline f  if and only if the condition Q
T
f = 

R is satisfied.  If condition above is satisfied then the roughness penalty will satisfy 

 

  
b

a

TT2 KffRdt)]t(''f[    (4) 

 

The proof of this theorem is in Green and Silverman (1994). 

 

Green and Silverman (1994) proposed smoothing spline for several conditions, e.g 

nonparametric and semiparametric regressions for independent continuous data, nonparametric 

and semiparametric generalized linear models for independent data, and quasi-likelihood for 

independent data.  They also considered method for correlated continuous data.  For quasi-

likelihood approach, the important result is the solution of the function f for nonparametric 

regression and parameter  for semiparametric regression, obtained by maximizing “penalized 

quasi-likelihood”: 
 

  dt)]t(''f[
2

1 2   (5) 

 

Thus the solution of f is obtained by maximizing (5). 
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3.  GENERALIZED ESTIMATING EQUATION-SMOOTHING SPLINE 

 

3.1  Estimation of GEE-Smoothing Spline 

 

Suppose there are n subjects and the measurement of the i-th subject taken ni times.  Let yi = (y1i, 

y2i, …, yni,i)
T
 be a vector of responses of the i-th  subject, corresponding to the vector of covariate 

ti = (ti1, ti2, …, ti,ni)
T
 and yij comes from exponential family distribution with canonical parameter 

ij.  Thus E(yij) = b’(ij) = ij  and Var (yij)= b’’(ij)a().  

Consider the population average model, where the systematic component of the exponential 

family is nonparametric, rather than parametric, that is iijijij n,...,2,1j ;n,...,2,1i ),t(f)(g  . We 

replace the systematic component with unknown smooth function, i.e. natural cubic splines, 

rather than linear (known) function.  In this paper we use the canonical link function 
ijij

  .  

Suppose Xi is the ni x q incidence matrix of all tij’s that can be constructed as follows.  Let all  

tij’s  have q different values that can be stated as t(1) < t(2) < … < t(q) and the relation to xijk is xijk 

= 1, if tij = t(k) and xijk = 0, if tij ≠ t(k). 

Let xij = (xij1, xij2, …, xijq)
T
 . The vector of the functions f at different point is denoted by 
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)q()2()1(
)]t(f),...,t(f),t(f[f   . 

 

Then the function f at point tij can be expressed as f
T

ijij
x)t(f  . Set 
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With this set-up, the link function now has the form f
T

ijijij
x)t(f)(g   

Since function f can be any arbitrary smooth function, then to maximize “quasi-likelihood” 

score function, one might take yij as the estimates of f(tij) and the  will be maximum.  

However, the function obtained is just an interpolation of the yij and the function is too rough or 

wiggly. A smooth function can be obtained by adding roughness penalty to the objective 

function.  This roughness penalty is called penalized “quasi-likelihood” function defined by 
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From (1), (3), (4) and (5), the generalized estimating equation-smoothing splines is defined as 
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f .  (6) 

 

Given the current estimates of α̂ and assuming canonical link function is being used, the iterative 

procedure using modified Fisher scoring for f is 
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where V
~

 is defined as in (2).  Solution of f can also be obtained using iteratively re-weighted 

least square method.  Define )μy(AXy ii
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f  

Using 2/1

i

2/1

ii

i

i

iiii

i

i

i

i

iii

i
A)α(RAV   ;

η

θ
 Δ   ;XΔA

β

η

η

θ

θ

μ

β

μ

β

))θ('b(
D 



























 and using canonical link 

function, thus (7) can be rewritten as 
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where A, f, and   are evaluated from the s-th iteration. Solution of f is obtained from (8) by 

iterating until convergence.   

Derivation of the variance of estimate may follow Liang & Zeger (1986) also known as the 

sandwich estimator.  For GEE this estimator is consistent even R() is not the true correlation 

matrix of yi.  Since )Aff̂(Var)f̂(Var   for any constant matrix A, then the covariance matrix of 

the estimate obtained from (7) is 1

01

1

0
)f̂(Var   , where 
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XAV

~
SSV

~
AX . The sand-wich estimator is robust to the misspecification of 

correlation structure.   Another possibility of variance of the estimate is the naïve (model based) 

estimator defined by  1

0
)f̂(Var  .  Liang & Zeger (1986) also gave moment method to estimate 

the association parameter, , and the scale parameter, . 

 

3.2 Smoothing Parameter Selection 

 

Smoothing parameter () is an important part in GEE-Smoothing Spline. This parameter 

measures the “trade off” or exchange between goodness of fit and the roughness or the 

smoothness of the curve.  Hence, the performance of the estimator depends on .  In selecting 

smoothing parameter, we use a method proposed by Wu & Zhang (2006, p326) which is called 

leave-one-subject-out cross validated deviance (SCVD).  Smoothing parameter  is chosen that 

minimizes the SCVD score, where 
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ijij
)ˆ,y(d)(SCVD   where d is “deviance” and 

ij

)i(1)i(

ij
)f̂X(g    is the estimate value for the i-th subject and the j-th time observation using f

(-i)
. 

The f
(-i)

 is f  obtained without the i-th observation.  Since GEE is based on quasi-likelihood thus 

the deviance is also based on the quasi-likelihood  (see: Hardin & Hilbe, 2003, Ch. 4; 

McCullagh & Nelder, 1989 Ch. 9).   

Direct computation of f
(-i)

 is time consuming.  Wu & Zhang (2006) suggested using 

approximate of  f
(-i)

 computed as follows.  Suppose from the final iteration of (7) or (8) we have 

iD , 1

iV
~ , and Si.  Then the f

(-i)
 is approximated by  
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We still need to compute )i(ˆ 
f  for i = 1, 2,…, n, but we do not  need to iterate (9) from the 

beginning. 
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4.  SIMULATION STUDY 

 

The objective of this simulation is to study the properties of GEE-smoothing spline, such as the 

bias, consistency, and efficiency by considering different sample size and correct and incorrect 

correlation structure in the estimation.  In this simulation we only consider binary data using 

logit link function. 

 

4.1  Model and Structure of Data 

 

We generated correlated binary data using R language version 2.7.1 (see Leisch et al, 1998).  

Three correlation structures were considered: (i) autoregressive with corr(yij,yi(j+1)) = 0.7, for j = 

1, 2, …, ni; (ii) exchangeable with corr(yij,yij’) = 0.35, for j’, j = 1, 2, …, ni and  j’ j; and (iii) 

independent with corr(yij,yij’) = 0, for j’, j = 1, 2, …, ni and  j’ j.  Each subject was considered 

to be measured ten times, t = 7.5, 25.5, …, 169.5.  The function was f(t) = Sin(t/90) .  The 

response variable, yij, related to covariate t through a link function is as follows, 
 

ijij
)y(E   and  )t(f

1
log)(itlog

ij

ij

ij

ij






















  

 

We considerd three sample size n = 15, n = 30, and n = 50.  For each correlation structure, we 

estimated the function f by asssuming that the correlation structures were (1) autoregressive, (2) 

exchangeable, and (3) independent.  Thus for each one, there were nine combinations of sample 

size and correlation structure.  Each combination was run 250 times.  The association parameter 

and the scale parameter were estimated using method of moment given by Liang & Zeger 

(1986). 

 

4. 2 Simulation Results 

 

Figure 1 shows pointwise sum of absolute deviation (SAD).  SAD is defined as follows.  

Suppose *

tf̂ is the average of 250 replications at point t, thus 



250

1r

)r(*

t
250/)t(f̂f̂ .  SAD is defined 

as 



10

1j
jt

*

jt
|ff̂|SAD . Thus SAD shows the bias of the estimates. Figure 1(a-c) shows SAD for 

true correlation structure of autoregressive, exchangeable, and independent, respectively.  

From Figure 1 we can observe the behavior of the bias of the estimators.  Referring to the 

correlation structure, there is no obvious pattern of the bias with respect to the correct or 

incorrect correlation structure.  The degree of biasness is related to the sample size.  Using 

correct or incorrect correlation structure, the bias will decrease when sample size increases.  This 

behavior is the same for data that have high correlation (autoregressive,  = 0.7), moderate 

correlation (Exchangeable,  = 0.35), and independent. 

We use standard deviation of 250 of each point estimates to study the consistency and 

efficiency.  The estimator is said to be consistent if the standard deviation tends to zero when 

sample size is infinity, i.e. standard deviation decreases when sample size increases.  This 

standard deviation can also be used to study the efficiency, that is small standard deviation 

indicates the efficiency of the estimator.  Figure 2 shows the standard deviation of 250 pointwise 

function estimates. 
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(a) Autoregressive,  = 0.7 (b) Exchangeable,  = 0.35 

 
(c) Independence 

Figure 1. Sum of Absolute Deviation of Three of True Correlation Structures 

 

 

From Figure 2 we can observe the consistency of the estimator.  The trend of the standard 

deviation for all true correlation structures is the same.  It decreases when sample size increases. 

The same trend is also observed for all correlation structures, using correct or incorect 

correlation structure.   This means that the estimators are consistent and the consistency still 

holds even if we use incorrect correlation structure.  The rate of the decrease of standard 

deviation from n =15 to n = 30, and from n = 30 to n = 50, is the same for all true correlation 

structures.  This indicates that the convergency rate is (almost) the same for all conditions of 

true correlation structures. 

From the standard deviation we can also study the efficiency of the estimator.  From the 

result of the efficiency study we may conclude whether we need to take into account the 

correlation into the model or just ignore the dependency.  The method that produces smaller 

variance or standard deviaton of estimator indicates it is more efficient than the others. 

From Figure 2 we see that if the data are correlated (true correlation is autoregressive or 

exchangeable), for a specific sample size, the largest standard deviation is obtained if one 

assumes that the data are independent.  Whilst using true correlation structure, the standard 

deviation is the smallest.  This means that taking into account the dependency into the model is 

better than assuming the data are independent, even if we use incorrect correlation structure.  The 

most efficient estimate is obtained if we use true correlation structure.  The difference between 

standard deviations of  correlation structure (AR, EXC, and IND) tends to get closer when we 

increase the sample size, hence we conjecture that the efficiency of correct or incorrect 

correlation structure is almost similar if sample size is large.  If the true correlation structure is 

independent, the standard deviation of AR, EXC, and IND are almost similar, for all sample size.  

Thus in this case, the efficiency of using incorrect correlation structures is almost similar to the 

efficiency of using correct correlation structure. 
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(a) True Correlation Structure is AR  

 

 
(b) True Correlation Structure is Exchangeable 

 

 
(c) True Correlation Structure is Independence 

 

Figure 2. Standard Deviation of 250 Replications of Pointwise Function Estimates 

 

 

5. APPLICATION TO REAL DATA 

 

As an application of the proposed method, we used data of AIDS Clinical Trials Group (ACTG) 

388 study sponsored by NIAID/NIH.  Data used was CD4+ cell count as the response variable 

(see. Fischl, et al., 2003  for detail).  These data have been used by Park & Wu (2006) for 

nonparametric mixed-effects models.  We did not utilize all the data, only those subjects that had 

received lamifudine plus zidovudine and indinavir (indinavir group) for observations at week 0, 

8, 16, ..., 80.  Only subjects with complete observations were considered.  The covariate was the 

time (week). 
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As a comparison we considered three scenarios: (i) parametric approach; (ii) nonparametric 

(smoothing spline) approach with assumption within subject observations are independent; and 

(iii) nonparametric approach with assumption within subject observations are dependent, using 

GEE-Smoothing spline assuming the within subject correlation following autoregression 

structure. The model was E(Yij)=ij. We considered linear and quadratic model for parametric 

approach: 

1. L
ij = 0 + 1WEEKij 

2. Q
ij = 0 + 1WEEKij+ 2

WEEK
2

ij, 

and for nonparametric approach we used the model: ij=f(WEEK).  We used PROC GENMOD 

for parametric approach, and SAS IML for nonparametric approach. 

The results of parametric approach are model (1): 2.938WEEK163.696ŷ  with t

tj,j
887.0r 


 

and model (2): 20.036WEEK-5.817WEEK149.456ŷ  with t

tj,j
886.0r 


.  All estimates of regression 

coefficients have p-value < 0.0001.  Thus we recommend quadratic model for the parametric 

approach. 

Figure 3 shows the comparison between the estimate of variance of )t(f̂
j

using independence 

and AR assumption of correlation structure, for naive and robust variance estimates.  This figure 

shows that there are large differences between naive estimates of independence and AR 

correlation assumption, where variance from independence assumption is much smaller than that 

obtained from AR assumption. This shows that considering independence for these data is not 

appropriate and will result in the under estimation of variance. Whilst the robust estimate of 

variances both assuming independence and AR are almost similar, for all points measurement.  It 

shows the power of the robust or sandwich variance estimate, if we use incorrect correlation 

structure. 

The estimates of f(t) based on nonparametric approach by assuming independence and AR 

correlation structure are almost similar for both functions estimates (Figure 4)  for all time 

measurements (week).  This is not a general case for correlated data, since the within subject 

correlation is large, where the correlation estimate for AR assumption is t

tj,j
889.0r 


. The 

advantage of using dependence assumption to these data is that we know that within subject 

observations have high correlation.   

 

 

 
Figure 3. Variance Estimates of Ten Points Function Estimates  

for Nonparametric Approach of CD4 Cell Data. 
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Figure 4.  Pointwise Function Estimates for Parametric and Nonparametric Approach of CD4 

Cell Data and the Confident Interval Based on GEE-Smoothing Spline. 

 

 

Comparing the nonprametric approach and parametric approach for these data, we suggest that 

quadratic model is appropriate, since its estimates are in the range of nonparametric confidence 

interval (see Figure 4).   

 

6. CONCLUSION 

 

From the simulation results, we can see that estimates obtained from GEE-Smoothing spline has 

good properties, with respect to the  biasness, consistency and efficiency.  The best estimate is 

obtained if the correct correlation structure is used.  The sandwich variance estimator gives a 

robust variance estimate with respect to the misspecification of the correlation structure. 
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ABSTRACT 

 

In this paper, we improve the power of the chi-square test for goodness-of-fit based on Ranked 

Set sampling (RSS), a sampling technique introduced by McIntyre (1952). Moreover, we 

conduct a simulation study to compare the power of the chi-square test based on RSS with its 

counterpart under SRS. 

 

Keywords: Goodness of fit test; Chi-square test; Power; Logistic distribution; Ranked set 

sample. 

 

1. INTRODUCTION 

 

Ranked Set Sampling (RSS), introduced by McIntyre (1952), is an ingenious sampling technique 

for selecting a sample which is more informative than a Simple Random Sampling (SRS) to 

estimate the population mean. RSS technique is very useful when visual ranking of population 

units is less expensive than their actual quantifications. Therefore, selecting a sample based on 

RSS can reduce the cost and increase the efficiency of estimation. McIntyre had made use of 

RSS technique to estimate the mean pasture and forage yields. 

The basic idea behind selecting a sample under RSS can be described as follows: Select m  

random samples each of size m . Using a visual inspection, rank the units within each sample 

with respect to the variable of interest. Then select, for actual measurement, the thi  smallest unit 

from the thi  sample, 1,..., .i m  In this way, we obtain a total of m  measured units, one from 

each sample. The procedure could be repeated r times until a sample of n mr  measurements 

are obtained. These mr  measurements form an RSS. Takahasi and Wakimoto (1968) gave the 

theoretical setups for RSS. They showed that the mean of an RSS is the minimum variance 

unbiased estimator for the population mean. Dell and Clutter (1972) showed that the RSS mean 

remains unbiased and more efficient than the SRS mean for estimating the population even if 

ranking is not perfect. Stocks and Sager (1988) studied the characterization of an RSS. They 

suggested an unbiased estimator for the population distribution function based on the empirical 

distribution function of a RSS. Based on this empirical distribution function, they proposed a 

Kolmogorov-Smirnov goodness-of-fit test. They derived the null distribution of their proposed 

test.  RSS has been used extensively in ecological and environmental fields (Johnson et al., 1993; 

Patil and Taillie, 1993; Kaur et al., 1996). 

mailto:Kamarulz@ukm.my
mailto:alodatmts@yahoo.comb
mailto:kpsm@ukm.my
mailto:salsubh@yahoo.com
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It is known that two factors which affect the efficiency of RSS are set size ( )m  and the 

ranking errors. The larger the set size, the larger is the efficiency of the RSS.  Thus if the set size 

is larger, it is more difficult to conduct the visual ranking and as a result, the ranking errors 

increase. (Al-Saleh and Al-Omari, 2002). Several authors have modified RSS to reduce the error 

in ranking and to make visual ranking tractable by the experimenter (Muttlak, 1997; Samawi et 

al., 1996; Al-Odat and Al-Saleh, 2001; Muttlak, 2003). Samawi et al. (1996) investigated the use 

of Extreme Ranked Set Sampling (ERSS) which consists of quantifying the smallest and the 

largest order statistics. Muttlak (1997) introduced the Median Ranked Set Sampling (MRSS) 

which consists of quantifying only the median of each set in the McIntyre’s RSS. Bhoj (1997) 

proposed a modification to RSS and called it New Ranked Set Sampling (NRSS). He used this 

method to estimate the location and the scale parameters of the rectangular and logistic 

distributions. A comprehensive survey about developments in RSS can be found in Chen (2000). 

Al-Odat and Al-Saleh (2001) introduced the concept of varied set size RSS, which they called 

Moving Extremes Ranked Set Sampling (MERSS). They investigated this modification non-

parametrically and found that the procedure can be more efficient and applicable than the SRS.  

When a researcher is interested in doing parametric statistical inferences about the population 

of interest based on RSS, it is important to know the shape of the parent distribution, i.e., the 

distribution from which a ranked set sample comes. This requires new statistical developments 

on how to do a goodness-of-fit test when the data in our hand are collected using RSS technique. 

In the literature, however, not much attention has been given on the goodness of fit tests on data 

collected based on RSS technique and its modifications. Thus, in this paper, we improve the 

power of the chi-square test statistic for goodness-of-fit under RSS.  

This paper is organized as follows. In Section 2, we propose a chi-square test statistic for 

goodness-of-fit under RSS. In Section 3, we apply the proposed method for the logistic 

distribution. In Section 4, an algorithm is designed to calculate the power function under the 

distribution given in .H  In Section 5, a simulation study is conducted to compare the power of 

the chi-square test statistic under RSS with its SRS counterpart. In Section 6, we apply the 

Kullback-Leibler information to compare the SRS and the RSS. In Section 7, we state our 

conclusions. 

 

2. CHI-SQUARE TEST FOR GOODNESS-OF-FIT 

 

In our study, we assume that the set size, in McIntyre’s RSS, is odd. This assumption will lead to 

simple calculations when comparing our method with median ranked set sampling. If the set size 

is even, then the theory developed here could be extended without hesitation. Let 1 2,  ,..., rX X X   

be a random sample from the distribution function ( )F x . Assume that our objective is to test the 

statistical hypotheses 1: ( ) ( )     ,  vs.  : ( ) ( )o o oH F x F x x H F x F x     for some x , where 

( )oF x   is a known distribution function. One of the well known tests is the 2  test statistic for 

goodness-of-fit which can be described as follows.   Let  1 2 1,  ,..., kI I I    be a partition of the 

support of ( )  and  o jF x N   number of 'iX s   that fall in   ,  1,  2, ...,  1.jI j k   For large n , 

the hypothesis  

1: ( ) ( )     ,  vs.  : ( ) ( )o o oH F x F x x H F x F x    

 for some x ,  is rejected if   
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21
2 2

1 , 

1

( )
  

k
j j

k

j j

N nP

nP
 








   

where  ( ),   1,  2,...,  1
oj F i jP P X I j k     and 2

1 , ,k   is the  (1- )100   quantile of the chi-

square distribution with  k  degrees of freedom. It can be noted that testing the hypothesis   

 

1: ( ) ( )     ,  vs.  : ( ) ( )o o oH F x F x x H F x F x    

for some x , is equivalent to testing the hypothesis  

* *

1: ( ) ( ),        vs.   : ( ) ( )o i io i ioH G y G y y H G y G y     

for some ,i  where   ( ),  ( )i ioG y G y     are the cdf’s of the  thi   order statistics of  random 

samples of size  2 1m    chosen from ( ),  ( )oF x F x ,  respectively. According to Arnold et al. 

(1992)  ( ) and  ( )i ioG y G y  have the following representations: 

                         
2 1

(2 1)
2 1

( ) [ ( )] [1 ( )]
m

j m j

i

j i

m
G y F y F y

j


 



 
  

 
  

and            

                      
2 1

(2 1)
2 1

( ) [ ( )] [1 ( )] ,
m

j m j

io o o

j i

m
G y F y F y

j


 



 
  

 
  

respectively. For example, in case of 2,  1,  2,  and 3m i  , the cdf’s   ( ) '   and  ( ) 'i ioG y s G y s  

are given by   

3

1

3

1

2 3

2

2 3

2 3

2

( ) 1 [1 ( )] ,

( ) 1 [1 ( )] ,

( ) 3 ( )(1 ( )] ( ),

           3 ( ) 2 ( ),

( ) 3 ( ) 2 ( ),

o o

o o o

G y F y

G y F y

G y F y F y F y

F y F y

G y F y F y

  

  

  

 

 

 

and  

3

3

3

3

( ) ( ),

( ) ( ).o o

G y F y

G y F y




 

It is easy to show that the equation  ( )= ( )i ioG y G y  has the unique solution ( ) ( ).   oF x F x  

If we apply ranked set sampling to collect the data based on the thi  order statistic, then we 

may use the resulting data to build a chi-square test for the hypothesis * *

1  vs.   oH H . To do this, 

let 1,..., rY Y  be a random sample of size r selected via the thi  order statistic and let 



767 
 

 , 1,...,  1jI j k   be a partition of ( , )  . Let  
jM   #of  'iY s  that fall in the interval 

,  1,...,  1jI j k  . We use the chi-square test statistic 

2

* 21
*

*
1

(  )
,                                                           (1)

 

k
j j

j j

M r P

r P







  

where * ( )

j

j io

I

P dG y   to test the hypotheses * *

1  vs.   oH H .  The hypothesis *

oH  is rejected at 

level   if 
2* 2

1 , .k    

The logistic distribution is widely used in many fields of science because it is more suitable 

than normal distribution to model heavy-tailed data sets arising in biology, econometrics, 
agricultural etc. The logistic distribution has the following cdf  

( )/ -1( ) (1 ) ,   - ,  ,  >0.   x

oF x e x            

A historical background on this distribution and its application can be found in Balakrishnan 

(1992). Because of its wide applications, this distribution will be mainly considered in this paper. 

In the next section, we show, using simulation, that the test statistic *2  is more powerful than 

the test statistic 2  when they are compared using samples of the same size.  The power of the 
*2  test statistic can be calculated according to the equation 

Power of                                *2 *2 2

1 , ( ) ( ),                             (2)H kH P       

where H  is a cdf under the alternative hypothesis *

1H .  Since it is difficult to obtain this power 

theoretically, we employ the Monte Carlo simulation to approximate this power. 

 

3. TESTING FOR LOGISTIC DISTRIBUTION 

 

Let ( ) / 1( ) (1 ) ,x

oF x e       where   and    are assumed to be known. Let 1,..., rY Y  be as in the 

previous section. To test the hypothesis ( ) / 1: ( ) (1 )   ,x

oH F x e x       it is equivalent to test  

* : ( ) ( )             ,o i ioH G y G y y   

and 

2 1
( ) / 1 ( ) / ( ) / 1 (2 1)

2 1
( ) [(1 ) ] [ (1 ) ] .

m
y j y y m j

io

j i

m
G y e e e

j

     


         



 
   

 
  

To do this, consider the following partition of  ( , ) :    

1 1( ,  ],  (( 1) ,  ],  2,...,  ,  ( ,  )           (3)j kI a I j a ja j k I ka        

Let  jM   number of  'iY s  that fall in the interval  ,  1,...,  1.jI j k   Thus, we have  
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*

( 1)

( ,  ) ( ) ( ) (( 1) ),

ja

j io io io

j a

P dG y G ja G j a 


     

and *

1 ( ,  ) ( )ioP G a    and *

1( ,  ) 1 ( ).k ioP G ka     So, we reject  *

oH    at level of significance 

  if 

* 21
*2 2

1 , *
1

(  ( , ))
                     (4)

 ( , )

k
j j

k

j j

M r P

r P


 
 

 








   

If  and    are unknown, then we may estimate them using the method of minimum chi-square 

distance, i.e, we estimate them by ˆ ˆ  and   , which minimize the left hand side of (4). In this 

case, we lose two degrees of freedom. For more details about this see Lehmann (1999).  

 

 

4. POWER COMPARISON 

 

In this section, we compare the power of the test statistic

 

*2  with the power of the test statistic

 
2

 

based on samples of the same size. To calculate the power of *2

 

under ,H  a distribution 

under 1H , we need to use simulation. So, we design the following algorithm. 

1. Select a sample of size r from ,H  a distribution under the alternative hypothesis. 

2. Classify the sample obtained in step 1 into the 1k   subintervals 1 2 1, ,..., ,kI I I   given in 

(3) to obtain the frequencies 1 2 1,   ,...,  kM M M  . 

3. Obtain the values of  * * *

1 2 1,  ,...,  kP P P   as follows:   

* *

1 ( ,  ) ( ),  ( ,  ) ( ) (( 1) ),  2,...,  ,io j io ioP G a P G ja G j a i k         

and *

1( ,  ) 1 ( ).k ioP G ka     

4. Calculate *2  from equation (1). 

5. Repeat the steps (1) - (4), 10,000 times to get  *2 *2

1 10,000,...,     . 

6. Approximate the power of the *2  test at H as follows 

               Power of
10,000

*2 *2 2

1 ,

1

1
( ) ( )

10,000
t k

t

H I    



  , 

where (.)I  stands for the indicator function. 
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5. SIMULATION RESULTS 

 

We approximated the power of each test statistic based on a Monte Carlo simulation of 10,000 

iterations according to the algorithm of Section 4. We compared the powers of the two test 

statistics for different samples sizes, 30,  50,  100r  , different set sizes, 2 1,m   where 

1,  2,  3,  4m  , (m=1 refers to SRS case), different number of intervals: 5,  10,  15k   and 

different alternative distributions: Normal (0, 1), Laplace (0, 1), Cauchy (0, 1),  Uniform (-4, 4), 

Lognormal (0, 1),  exponential (0, 1) and the Student-T with 5 degrees of  freedom. We also 

made the comparison only for the cases when the data are quantified via either minimum, median 

or maximum. The Simulation results are presented in the Tables (1)-(3). 

From the above tables, we make the following remarks: 

1. The power is increasing in the sample size r  and also in the set size  .m   

2. The chi-square tests based on the extreme order statistics are more powerful than their 

counterparts in SRS when compared under samples of the same size. 

3. No clear pattern concerning the power and the number of intervals. 

 

6. KULLBACK-LEIBLER INFORMATION 

 

From the simulation results in the previous section, we see that the chi-square test based on the 

extreme order statistics is more powerful than the chi-square test based on the median. In this 

section, we try to give an interpretation to this by employing the Kullback-Leibler information 

number to test 1: ( ) ( )     for all  against   : ( ) ( )o o oH F x F x x H F x F x    for some .x  The 

information theory defines the Kullback-Leibler as follows.  Let 0 ( )f x  and 1( )f x  be two density 

functions induced by two hypotheses say 0H  and 1H , respectively. The Kullback-Leibler 

information number of the two densities 0 ( )f x  and 1( )f x , denoted by 0 1( , )I f f , is given by 

 

0
0 1 0

1

( )
( , ) ( ) log .

( )

f x
I f f f x dx

f x





   

The quantity 0 1( ,  )I f f  can be interpreted as the mean information per observation under 0 ( )f x  

that discriminates in favor of 0H  against 1.H   Let  *

1( , )io iI g g  be the Kullback-Leibler 

information number of the two densities ( )iog x  and 1( )ig x  induced by the corresponding 

equivalent hypotheses *

0H  and *

1H ,  respectively.  
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Table1.   1000Power   values for SRS and RSS (using first order statistic), 0.05   

H  k=5 k=10 k=15 

 1m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 80 632 995 115 457 999 62 283 952 

Laplace 29 69 299 94 238 656 57 141 529 

Cauchy 712 865 985 567 768 972 648 825 981 

Uniform 861 976 1000 907 992 1000 920 989 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 42 183 654 60 187 673 36 111 528 

 2m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 495 924 1000 252 795 1000 132 582 999 

Laplace 45 131 423 72 207 623 52 131 500 

Cauchy 725 915 996 555 804 986 628 868 994 

Uniform 897 990 1000 943 997 1000 938 996 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 108 329 822 76 248 794 43 145 654 

 3m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 929 999 1000 746 995 1000 553 973 1000 

Laplace 114 272 701 117 282 725 94 216 645 

Cauchy 867 982 1000 670 915 1000 781 956 1000 

Uniform 890 994 1000 969 1000 1000 941 999 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 351 663 982 207 541 965 134 395 916 

 4m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 993 1000 1000 968 1000 1000 912 1000 1000 

Laplace 218 453 854 207 421 855 170 338 789 

Cauchy 940 996 1000 775 970 1000 870 988 1000 

Uniform 928 998 1000 990 1000 1000 976 1000 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 547 859 997 389 753 994 288 640 986 
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Table 2.   1000Power   values for SRS and RSS (using largest order statistic), 0.05   

H  k=5 k=10 k=15 

 1m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 83 621 997 111 454 990 61 280 952 

Laplace 28 72 294 79 230 665 59 145 536 

Cauchy 716 868 986 647 820 983 573 827 986 

Uniform 916 978 1000 909 992 1000 913 988 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 40 176 653 61 185 678 41 117 524 

 2m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 497 926 1000 258 792 1000 138 591 999 

Laplace 45 126 425 77 202 637 50 140 514 

Cauchy 721 917 998 627 863 997 548 870 988 

Uniform 920 991 1000 944 997 1000 938 996 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 104 334 826 71 259 807 45 152 673 

 3m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 929 999 1000 735 994 1000 547 971 1000 

Laplace 123 268 695 112 279 727 87 220 645 

Cauchy 869 980 1000 775 956 1000 670 955 1000 

Uniform 891 1000 1000 968 999 1000 956 999 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 333 656 980 203 519 958 130 377 904 

 4m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 992 1000 1000 973 1000 1000 908 1000 1000 

Laplace 214 454 856 215 431 851 162 338 792 

Cauchy 941 996 10000 865 988 1000 771 969 1000 

Uniform 986 1000 1000 986 1000 1000 979 1000 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 558 879 1000 414 768 997 306 662 987 
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Table  3.   1000Power   values for SRS and RSS (using median), 0.05   

H  k=5 k=10 k=15 

 1m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 82 623 997 116 466 990 60 290 948 

Laplace 26 72 300 97 238 657 60 142 525 

Cauchy 701 863 986 654 822 982 574 774 972 

Uniform 862 977 1000 907 991 1000 909 991 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 41 181 646 57 184 682 37 124 532 

 2m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 4 14 108 38 216 901 14 94 767 

Laplace 18 31 70 78 241 761 55 133 588 

Cauchy 663 838 925 701 867 955 739 865 944 

Uniform 907 984 1000 956 997 1000 966 996 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 8 15 61 30 105 574 17 51 404 

 3m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 2 3 4 27 148 773 6 56 645 

Laplace 2 3 4 58 225 789 20 83 559 

Cauchy 278 387 615 430 591 803 497 576 786 

Uniform 916 988 1000 970 1000 1000 968 999 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 1 3 3 14 69 3 6 24 315 

 4m                                         r  

 30 50 100 30 50 100 30 50 100 

Normal 2 1 1 11 128 705 2 29 544 

Laplace 1 3 5 42 217 798 12 49 523 

Cauchy 150 276 325 231 303 510 261 346 557 

Uniform 901 987 1000 980 1000 1000 981 997 1000 

Lognormal 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Exponential 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Student(5) 2 1 3 7 57 2 2 12 229 
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Then 

*

1

1

( )
( , ) ( ) log ,
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g y
I g g g y dy

g y





   

where ( )iog y  and 1( )ig y  are the density functions of the thi  order statistics from samples of 

size 2 1m   from the densities 0 ( )f x  and 1( )f x , respectively. So 

*

1

1

( )
( , ) ( ) log ,

( )

io
io i io

i

g y
I g g g y dy

g y





   

where 

1 2 1( ) ( ) (1 ( )) ( ),i m i

io i o o og y c F y F y f y     

1 2 1

1 1 1 1( ) ( ) (1 ( )) ( )i m i

i ig y c F y F y f y     

and 

(2 1)!
.

( 1)!(2 1 )!
i

m
c

i m i




  
 

Using numerical integration, the values of 0 1( , )I f f  and *

1( , )io iI g g  are calculated and 

presented in Table 4 for different distributions and different values of m and .j  It can be noted 

from Table 4, that the mean information per observation under ( )iog y (

1...,  -1,  1,...,  2 -1i m m m  ) that discriminates in favor of *

0H  against *

1H  is larger  than the 

mean information per observation under 0 ( )f x  that discriminates in favor of 0H  against 1H . 

Comparing with the simulation results for the case when i m ( median case), the results show 

that the chi-square test based on a SRS is better than the chi-square test based on a RSS.  In fact 

this agrees with the simulation results in the previous section.   

 

7.  CONCLUSION 

 

In this paper, we have proposed a chi-square test for goodness-of-fit when the data is collected 

via an RSS technique. We gave our attention to those RSS schemes which quantify only one 

order statistic namely minimum, median or maximum. Since it is easier for the experimenter to 

detect the extreme order statistics by visual inspection, then this makes the method applicable in 

real situation. Moreover, the theory developed could be extended easily to other distributions. 
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Table 4.   Kullback-Leibler information 0 1( , )I f f  (upper cell) and 
*

1( , )io iI g g  (lower cell) for different 

distributions and different m and .j  

0 1 and FF  m
j

 
1 2 3 4 5 

Logistic and  

Normal 
2 0.542 0.542 0.542   

0.773 0.399 0.773   

3 0.542 0.542 0.542 0.542 0.542 

1.164 0.543 0.360 0.543 1.164 

Logistic and 

Cauchy 
2 0.140 0.140 0.140   

0.195 0.060 0.195   

3 0.140 .140 0.140 0.140 0.140 

0.302 0.079 0.039 0.079 0.302 

Logistic and 

Laplace 
2 0.079 0.079 0.079   

0.096 0.129 0.096   

3 0.079 0.079 0.079 0.079 0.079 

0.102 0.151 0.165 0.151 0.102 

Logistic and 

Student (5) 
2 0.109 0.109 0.109   

0.146 0.149 0.146   

3 0.109 0.109 0.109 0.109 0.109 

0.189 0.189 0.170 0.189 0.189 

Lognormal and 

Exponential (1) 
2 0.119 0.119 0.119   

0.303 0.215 0.125   

3 0.119 0.119 0.119 0.119 0.119 

0.472 0.328 0.278 0.311 0.159 

LogNormal and 

Chi-Square(5) 
2 1.459 1.459 1.459   

2.228 3.297 2.979   

3 1.459 1.459 1.459 1.459 1.459 

2.528 4.277 5.209 5.171 3.867 
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ABSTRACT 

 

This paper develops a Bayesian inference for a multiplicative seasonal ARMA model by 

implementing a fast, easy and accurate Gibbs sampling algorithm. The proposed algorithm does 

not involve any Metropolis-Hastings generation but is generated from normal and inverse 

gamma distributions. The proposed algorithm is illustrated using simulated examples and a real 

data set.  

 

Keywords: Multiplicative seasonal ARMA models; prior distribution; posterior distribution; 

Gibbs sampling; Federal Reserve Board Production Index. 

 

1. INTRODUCTION 

 
Seasonal ARMA modeling of time series has been successfully applied in a great number of 
fields including economic forecasting. Bayesian analysis of ARMA type models is difficult even 
for non seasonal models since the likelihood function is analytically intractable, which causes 
problems in prior specification and posterior analysis. Different solutions including Markov 
Chain Monte Carlo (MCMC) methods have been suggested in the literature for the Bayesian 
time series analysis. Several authors have considered Bayesian analysis of ARMA models e.g.  
Newbold (1973), Monahan (1983), Broemeling and Shaarawy (1984), Shaarawy and Ismail 
(1987) and Marriott and Smith (1992) among others. 

Bayesian time series analysis has been advanced by the emergence of MCMC methods 
especially; the Gibbs sampling method. Assuming a prior distribution on the initial observations 
and initial errors, Chib and Greenberg (1994) and Marriott et al. (1996) developed Bayesian 
analysis for ARMA models using MCMC technique. Barnett et al. (1996, 1997) used MCMC 
methodology to estimate the multiplicative seasonal autoregressive and ARMA model. Their 
algorithm was based on sampling functions of the partial autocorrelations. A virtue of their 
approach is that one for one draws of each partial autocorrelation can be obtained but at the cost 
of  a more complicated algorithm. 

Recently, Ismail (2003a, 2003b) used Gibbs sampling algorithm to analyze multiplicative 
seasonal autoregressive and seasonal moving average models. His algorithm was based on 
approximating the likelihood function via estimating the unobserved errors. Then, the 
approximate likelihood is used to derive the conditional distributions required for implementing 
Gibbs sampler. Rather than restricting the parameters space to satisfy stationarity and 
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invertibility conditions as in Barrnett et al. (1997) and Marriott et al.  (1996) among others, the 
process could be made stationary and invertible by choosing the hyperparameters which ensure 
that the prior for the model coefficients lie  in the stationarity and invertibility region. The latter 
approach was used by Broemeling (1985), McCulloch and Tsay (1994) and Ismail (2003a, 
2003b) among others and is going to be used in this paper. 

The objective of this paper is to extend Ismail's (2003a, 2003b) algorithm to multiplicative 
seasonal ARMA models.  The proposed algorithm does not involve any Metropolis-Hastings 
iteration which is an advantage over other algorithms in the literature. In addition, our analysis is 
unconditional on the initial values, that is we assume that the series starts at time t = 1 with 
unknown initial observations and errors. Moreover, various features of the SARMA models, 
which may be complicated to check in the classical framework, may be routinely tested in the 
sampling based Bayesian framework. As an example, there is often interest in testing the 
significance of interaction parameters which are the product of the nonseasonal and seasonal 
coefficients in the model. The proposed algorithm can easily construct confidence intervals for 
interaction parameters and therefore test their significance. 

The paper is organized as follows. Section 2 briefly describes the multiplicative SARMA 
model. Section 3 is devoted to summarizing posterior analysis and the full conditional posterior 
distributions of the parameters. The implementation details of the proposed algorithm including 
convergence monitoring are given in section 4. The proposed methodology is illustrated in 
section 5 using simulated examples and Federal Reserve Board Production Index.  Finally, the 
conclusions are given in Section 6. 
 

2. THE MULTIPLICATIVE SEASONAL ARMA MODEL 

 

A time series {    is said to be generated by a multiplicative seasonal ARMA model of orders p, 
q, P and Q, denoted by SARMA(p,q)(P,Q)s,  if it satisfies 

 

                                       
                 

                                                     
 

where              is a sequence of independent normal variates with zero mean and variance 

    , and I is the set of integers. The backshift operator B is defined such that            , s 

is the number of seasons in the year. The nonseasonal autoregressive polynomial is        

           
        

   with order p, the nonseasonal moving average polynomial is 

                 
        

   with order q, the seasonal autoregressive polynomial 

is      
           

      
          

    with order P, and      
   

        
      

          
    is the seasonal moving average polynomial with order 

Q. 
 

The nonseasonal and seasonal autoregressive coefficients are              
  and 

               
 , and the nonseasonal and seasonal moving averages coefficients are 

            
  and                

 . Each of the nonseasonal and seasonal orders p, 

q, P and Q is always less than or equal to the number of seasons in the year s. The time series 

             is assumed to start at time t = 1 with unknown initial values                      

and unknown initial errors                     . 
The model (1) can be written as: 
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where, 

                                                                                    

                                                                    
 
  

                                                                           , 

                                                               
                       

 

and   and    are (s – p – 1) and (s – q – 1) row vectors of zeros respectively.  Model (2) shows 
that the multiplicative SARMA model can be written as ARMA model of order p+Ps and q+Qs 
with some zero coefficients and some coefficients that are products of nonseasonal and seasonal 

coefficients. Thus, the model is nonlinear in              which complicates the Bayesian 
analysis. However, the following sections explain how Gibbs sampling technique can facilitate 

the analysis. The SARMA model (2) is stationary if the roots of the polynomials       and 

     
   lie outside the unit circle, and when the roots of the polynomials       and      

   
lie outside the unit circle the process is invertibile. For more details about the properties of 
seasonal ARMA models see Box and Jenkins (1976). 
 

3. POSTERIOR ANALYSIS 

 

3.1 Liklihood Function 

 

Suppose that                  is a realization from the multiplicative SARMA model (2), 

assuming that the random errors         
   and employing a straightforward random variable 

transformation from    to   , the likelihood function                           =    is given 

by: 

                                       
 
       

 

   
   

 

 

   

                                                       

where, 

          
 
            

 
           

        
 
              

 
          

                      

 

   

       

 

   

     

 

   

                                                                  

                                     
The likelihood function (4) is a complicated function in the parameters                  . 
Suppose the errors are estimated recursively as: 
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where        
         

        
             

  are sensible estimates. Several estimation 

methods, such as the Innovations Substitution (IS) method proposed by Koreisha and Pulkila 

(1990), give consistent estimates for            . The idea of the IS method is to fit a long 
autoregressive model to the series and obtain the residuals. Then appropriate lagged residuals are 
substituted into SARMA model (2). Finally, the parameters are estimated using ordinary least 
squares method. Substituting the residuals in the likelihood function (4) results in an approximate 
likelihood function 

                                        
 
       

 

   
   

  

 

   

                                                                     

                                        
 
       

 

   
             

                           

where, 

  
         

 

   

          

 

   

       

 

   

      

 

   

            

 

   

       

                           

 

   

       

 

   

      

 

   

                                                                          

      are defined in (3), and    is a          matrix with t
th

 row  
 

                                                                                   , 
 
where,    is a (s – q – 1) row vector of zeros. 
 

3.2 Prior Specification 

 

For multiplicative SARMA models, suppose that, given the error variance parameter   , the 

parameters                    are independent apriori, i.e. 
 

                                                        

                     
         

          
                                    

            
             

             
           

             
                 

     

    
 

 
  
 

 
                                                                                                                             

 

where,         is the r-variate normal distribution with mean µ and variance ∆ and IG(α, β) is 
the inverse gamma distribution with parameters α and β. Such prior distribution is a normal 
inverse gamma distribution and can then be written as: 
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The prior distribution (10) is chosen for several reasons, it is flexible enough to be used in 
numerous applications, it also facilitates the mathematical calculations and  it is, at least 
conditionally, a conjugate prior. Multiplying the joint prior distribution (10) by the approximate 

likelihood function (7) results in the joint posterior                         which may be 

written as  

                              
                   

 
          

 

   
         

   
  

 

                                             
   

               
    

          

                                 
   

                 
    

                   
   

                                     
                         

                                  

 

3.3 Full Conditional Distributions 

 
The conditional posterior distributions for each of the unknown parameters is obtained from the 
joint posterior distribution (11) by grouping together terms in the joint posterior that depend on 
this parameter, and finding the appropriate normalizing constant to form a proper density. In this 
study all conditional posterior are normal and inverse gamma distributions for which sampling 
techniques exist. 
 

3.3.1 The Conditional Posterior of  : 

 

The conditional posterior of   is 
 

                                   
    

        
    

  ), 

where 

  
          

      
                           

            
   

  
   

 

  is an     matrix with               
 
            and   is an     matrix with     

       . 
 

3.3.2 The Conditional posterior of  : 

 
The conditional posterior of   is 

 

                                     
    

        
    

  ), 
where,  

  
          

   
  
   

                           
            

   
  
   

  is an     matrix with               
 
            and   is an     matrix with     

      . 
 

3.3.3 The Conditional Posterior of  : 

 

The conditional posterior of   is 
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  ), 
where,  

  
          

   
  
   

                          
            

   
  
   

 

  is an     matrix with               
 
           , and   is an     matrix with 

           . 
 

3.3.4 The Conditional Posterior of  : 

 

The conditional posterior of   is 
 

                                        
    

         
    

  ), 
where,  

  
          

   
  
   

                           
            

   
  
   

 

  is an     matrix with               
 
            and   is an     matrix with     

      . 
 

3.3.5 The Conditional Posterior of   : 

 

The conditional posterior of    is 
 

                                             
    

       
  

 
 
       

   

 
 , 

where, 
 

                        and            
   

           

      
   

               
   

               
   

          

        
    

                   
    

                          
    

           . 
 

Thus, the parameter         can be sampled from Chi-square distribution using the 

transformation  
       

   

       
      

 .  

 

3.3.6 The Conditional Posterior of   : 

 
Using model (2), the equations for the elements of    and errors    can be written as 

 

                              

where,  
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  and 

                     
 , which has the normal distribution with zero mean and variance 

(         where       is the unit matrix of order       . Using linear regression results and 

standard Bayesian techniques, the conditional posterior of    is 
 

  
          

                                      
          

     
  ), 

 
where,  

   
           

   
  

    
                                

             
   

  
    

 

and            . 

 

3.3.7 The Conditional Posterior of   : 

 

The conditional posterior of    is 
 

  
          

                                      
            

     
  ), 

where,  
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   and 

           . 

 

4. THE PROPOSED GIBBS SAMPLER 

 

The proposed Gibbs sampling algorithm for multiplicative SARMA model given in equation (2) 

can be conducted as follows: 

Step (1): Specify starting values                       
        

  and set    . A set of initial 

estimates of the model parameters can be obtained using the IS technique of Koreisha 

and Pulkila (1990).  

Step (2): Calculate the residuals recursively using (6). 

Step (3): Obtain the full conditional posterior distributions of the parameters.  

Step (4): Simulate  

                                    
    

  , 

                                      
    

  , 

  
                                     

    
  , 

  
                                       

    
  , 

                                  
            

    
  , 

   
          

                 
                     

  , 
                    and 

   
          

                                      
    . 

Step (5): Set         and go to Step (4). 

This algorithm gives the next value of the Markov chain 

{           
                     

      
      by simulating each of the full conditional 

posteriors where the conditioning elements are revised during a cycle. 

 

This iterative process is repeated for a large number of iterations and convergence is monitored. 

After the chain converges, after    iterations, the simulated values 

 

{                               
      

           , 
 

are used as a sample from the joint posterior. Posterior estimates of the parameters are computed 

directly via sample averages of the simulation outputs. 

 

A large and growing literature deals with techniques for monitoring convergence of Gibbs 

sampling sequences. In what follows we summarize the diagnostics that will be used in the case 

of multiplicative SARMA model: 

1. Autocorrelation estimates which indicate how much independence exists in the sequence 

of each parameter draws. A high degree of autocorrelation indicates that more draws are 

needed to get accurate posterior estimates. 

2. Raftery and Lewis (1992, 1995) proposed a set of diagnostics which includes 

 a thinning ratio (Thin) which is a function of the autocorre1ation in the draws. 
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 the number of draws (Burn) to use for initial draws or "burn-in" before starting to 

sample the draws for purpose of posterior inference. 

 the total number of draws (Total) needed to achieve desired level of accuracy. 

 the number of draws (Nmin) that would be needed if the draws represented an iid 

chain. 

 (I-stat) which is the ratio of the (Total) to (Nmin). Raftery and Lewis suggested that 

convergence problem may be indicated when values of (I- stat) exceed 5. 

3. Geweke (1992) proposed two groups of diagnostics. 

(a) The first group includes the numerical standard errors (NSE) and relative numerical 

efficiency (RNE). The NSE estimates reflect the variation that can be expected if the 

simulation were to be repeated. The RNE estimates indicate the required number of 

draws to produce the same numerical accuracy when iid sample is drawn directly from 

the posterior distribution. The estimates of NSE and RNE are based on spectral analysis 

of time series where two sets of these estimates are obtained. The first set is based on 

the assumption that the draws come from iid process. The second set is based on 

different tapering or truncating of the periodgram window. When there are large 

differences between the two sets, the second set of estimates would be chosen because 

it would take in consideration autocorrelations in the draws. 

(b) The second group of diagnostics includes a test of whether the sampler has attained an 

equilibrium state. This is done by carrying out Z-test for the equality of the two means 

of the first and last parts of draws and the Chi squared marginal probability is obtained. 

Usually, the first and last parts are the first 20% and the last 50% of the draws. 

 

LeSage (1999) implemented calculations of the above convergence measures using the Matlab 

package. These diagnostics will be used in section 5 to monitor the convergence of the proposed 

algorithm. 

 

5. ILLUSTRATIVE EXAMPLES 

 

5.1 Simulated Examples 

 

In this subsection we present two examples with simulated data to evaluate the efficiency of the 

proposed methodology. The two examples deal with generating 250 observations from 

SARMA(1,1)(1,1)4 and SARMA(1,1)(1,1)12 models respectively. The two simulated examples 

are as follows: 

 

(1):                                                                
(2):                                                                   
 

The analysis was implemented using Matlab and running on Pentium PC 2.53 GHZ took several 

seconds (90 seconds on average) to complete. The error variance    was chosen to be 0.5 in the 

first example and 1 in the second example. A non informative prior was assumed for 

                     
   via setting   

     
     

     
     (all these matrices are 

scalars),      and    . A normal prior with zero mean and variance         was used for 

the initial observations vector   , and with zero mean and variance         was used for the 
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initial errors vector   . The starting values for the parameters              were obtained using 

the IS method. The starting values for           were assumed to be zeros.  

Now, the implementation of the proposed Gibbs sampler is straightforward. For each data 

set, the Gibbs sampler was run 11,000 iterations where the first 1,000 draws are ignored and 

every tenth value in the sequence of the last 10,000 draws is recorded to have an approximately 

independent sample. All posterior estimates are computed directly as sample averages of the 

simulated outputs. 

Table 1 presents the true values and Bayesian estimates of the parameters for example 1. 

Moreover, a 95% confidence interval using the 0.025 and 0.975 percentiles of the simulated 

draws is constructed for every parameter. From table 1, it is clear that Bayesian estimates are 

close to the true values and the 95% confidence interval includes the true value for every 

parameter. Sequential plots of the parameters generated sequences together with marginal 

densities are displayed in figure 1. The marginal densities are computed using non parametric 

technique with Gaussian kernel.   Figure 1 shows that the proposed algorithm is stable and 

fluctuates in the neighborhood of true values. In addition, the marginal densities show that the 

true value of each parameter (which is indicated by the vertical line) falls in the constructed 95% 

confidence interval. 

 

Table (1): Bayesian Results for example (1) 

Parameter 
True 

values 
Mean 

Std. 

Dev. 

Lower 

95% 

limit 

Median 

Upper 

95% 

limit 

  0.4 0.377 0.062 0.253 0.377 0.504 

  0.6 0.619 0.039 0.539 0.619 0.692 

  0.4 0.357 0.079 0.198 0.354 0.514 

  0.6 0.585 0.070 0.444 0.586 0.722 

   0.5 0.511 0.044 0.429 0.510 0.597 

 

The convergence of the proposed algorithm is monitored using the diagnostic measures 

explained in section 4. The autocorrelations and Raftery and Lewis diagnostics are displayed in 

table 2 whereas table 3 presents the diagnostic measures of Geweke (1992). Table 2 shows that 

the draws for each of the parameter have small autocorrelations at lags 1, 5, 10 and 50 which 

indicates no convergence problem. This conclusion was confirmed by the diagnostic measures of 

Raftery and Lewis where the thining estimate (Thin) is 1, the reported (Nmin) is 937 which is 

close to the 1000 draws we used and I-stat value is 0.953 which is less than 5. Scanning the 

entries of table 3, confirms the convergence of the proposed algorithm where Chi squared 

probabilities  show that the equal means hypothesis can not be rejected and no dramatic 

differences between the NSE estimates are found. In addition, the RNE estimates are close to 1 

which indicates the iid nature of the output sample. 
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Figure (1): Sequential plots and marginal posterior distributions of example (1) 

 

 

Table (2): Autocorrelations and Raftery - Lewis Diagnostics for example (1) 

Par. 
Autocorrelations Raftery - Lewis Diagnostics 

Lag 1 Lag 5 Lag 10 Lag 50 Thin Burn Total(N) (Nmin) I-stat 

  -0.041 0.025 0.006 -0.094 1 2 893 937 0.953 

  0.001 0.084 0.084 -0.001 1 2 893 937 0.953 

  -0.005 0.032 0.032 -0.037 1 2 893 937 0.953 

  0.006 -0.011 -0.011 -0.025 1 2 893 937 0.953 

   0.007 -0.035 -0.035 -0.010 1 2 893 937 0.953 

 

 

Table (3): Geweke Diagnostics for example (1) 

Par. 
NSE  

iid 

RNE  

iid 

NSE  

4% 

RNE  

4% 

NSE  

8% 

RNE  

8% 

NSE  

15% 

RNE  

15% 
   

  0.00196 1 0.00188 1.078 0.0016 1.498 0.00121 2.60 0.369 

  0.00123 1 0.00116 1.118 0.0012 0.996 0.00110 1.25 0.899 

  0.00250 1 0.00242 1.062 0.0022 1.255 0.00175 2.04 0.515 

  0.00222 1 0.00255 0.758 0.0028 0.647 0.00260 0.73 0.019 

   0.00139 1 0.00151 0.844 0.0014 1.020 0.00146 0.90 0.996 

 

 

A similar procedure to that used for example 1 is repeated for example 2 and the true values and 

Bayesian results are shown in table 4.  Similar conclusions to those of example 1 are obtained. 

The convergence diagnostics for example 2 are displayed in table 5 and 6. Our Gibbs sampler is 

applied to several simulated data from other SARMA(1,1)(1,1)s models which do not appear 

here. The results for these data sets are similar to results of examples 1 and 2 and therefore are 

not included. 
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Table (4): Bayesian Results for example (2) 

Parameter 
True 

Values 
Mean 

Std. 

Dev. 

Lower 

95% limit 
Median 

Upper 

95% 

limit 

  0.5 0.517 0.050 0.423 0.517 0.612 

  0.8 0.817 0.024 0.774 0.816 0.867 

  0.4 0.407 0.075 0.266 0.407 0.555 

  0.7 0.713 0.064 0.591 0.713 0.839 

   1.0 0.950 0.085 0.797 0.943 1.138 

 

 

5.2 Federal Reserve Board Production Index 

 

The Federal Reserve Board Production Index consists of 372 monthly values from jauary 1948to 

December 1978. Using Box-Jenkins methodology, Shumway and Stoffer (2006) identified the 

following SARIMA (1,1,1)(2,1,1)12 model for Federal Reserve Board Production Index   : 

                              
      

                                      

where,                      

In this section, the proposed Bayesian analysis is applied to the differenced Federal Reserve 

Board Production Index series   . The hyper-parameters and starting values are chosen as in the 

simulated examples. Table 5 summarizes the Bayesian results for the differenced Federal 

Reserve Board Production Index series together with the corresponding results of Shumway and 

Stoffer (2006). Sequential plots and marginal densities of the differenced Federal Reserve Board 

Production Index series are displayed in figure 2. 

From Table 5, our Bayesian estimates are comparable to the estimates of Shumway and 

Stoffer (2006). Moreover, the standard deviation of our Bayesian estimates is equal to the 

standard deviation of the estimates of Shumway and Stoffer (206). This may be considered as an 

advantage to the proposed algorithm where uncertainty about the parameters and initial values 

are incorporated. 

 

Table (5): Bayesian Results for the differenced Federal Reserve Board Production Index series 

using SARMA(1,1)(2,1)12 

Parameter Mean 
Std. 

Dev. 

Lower 

95% 

limit 

Median 

Upper 

95% 

limit 

S-S 

estimates 

  0.574 0.105 0.368 0.577 0.777 0.580 

   -0.290 0.079 -0.444 -0.290 -0.145 -0.220 

   -0.315 0.050 -0.411 -0.316 -0.214 -0.280 

   -0.244 0.117 -0.476 -0.245 -0.026 -0.270 

   -0.413 0.092 -0.587 -0.408 -0.233 -0.500 

   1.271 0.093 1.097 1.267 1.461 1.350 

 



783 

 

 
Figure (2): Sequential plots and marginal posterior distributions of the differenced Federal 

Reserve Board Production Index series 

 

It is worthwhile to test the significance of the interaction parameter        in the above 

SARIMA (1,1,1)(2,1,1)12 model. Although the testing procedure of the significance of   is 

complicated or even impossible in the classical approach framework, it is straightforward in the 

suggested Bayesian framework. Using the proposed Gibbs sampling algorithm, the marginal 

posterior distribution of   is obtained and displayed in figure 3. Moreover a 95% credible 

interval for   is                8, which supports the significance hypothesis of the 

interaction parameter. 

  

 

 

 
Figure (3): marginal posterior distribution of the interaction parameter   
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6. COMMENTS AND CONCLUSION 

 

In this paper we developed a simple and fast Gibbs sampling algorithm for estimating the 

parameters of the multiplicative SARMA model. The empirical results of the simulated examples 

and real data set showed the accuracy of the proposed methodology. An extensive check of 

convergence using several diagnostics showed that the convergence of the proposed algorithm 

was achieved. 

Although the employed prior distribution in section 3 is informative, a noninformative prior 

is used for the parameters                 in the illustrative examples for the sake of the 

simplicity. However, if one needs to use informative prior, the hyperparameters of the prior 

distribution must be elicited. One way to elicit the hyperparameters is the training sample 

approach where the data is divided into two parts; the first part constitutes the training sample 

and is used to provide proper priors. Then, posterior distributions are obtained by combining 

these priors with the likelihood based on the second part of the data (non-training sample). The 

training sample approach is used by Lempers (1971) and Speigelhalter and smith (1982) among 

others. 

Future work may investigate model identification using stochastic search variable selection, 

outliers detection, and extension to multivariate seasonal models. 
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ABSTRACT

Wavelets are orthonormal basis functions with special properties that show potential in
many areas of Mathematics and Statistics. A major advantage of wavelet methods in curve
estimation is their adaptivity to erratic functions in the signal. This high degree of adaptivity
is achieved through thresholding, which typically amounts to term by term assessment of
estimates of coefficients in the empirical wavelet expansion of the unknown function. This
paper concentrate on selecting a threshold for wavelet function estimation. A new threshold
value is proposed for wavelet shrinkage estimators operating on data sets of length a power
of 2. It is compared with established threshold parameter in wavelet shrinkage by using
simulation. For certain range of data the proposed threshold value lies between minimax
and universal threshold values. The simulation result shows that the proposed threshold
value gives a better estimation of the true curve.

Keywords. Minimax estimation, non-parametric regression, non-linear estimation, or-
thonormal bases, thresholding, universal threshold, wavelet shrinkage.

1. INTRODUCTION

Suppose we are given data
yi = f(xi) + εi (1)

where εi is some noise process with variance σ2, xi = i
n
. The idea of non parametric regression

is to estimate the unknown function f from the observations yi, i = 1, 2, 3, . . . , n without
assuming any particular parametric form. In vector notation, the model (1) can be written
as

Y = F + E (2)

where y = (y1, y2, . . . , yn), F = (f1, f2, . . . , fn) and E = (ε1, ε2, . . . , εn) the observed data,
signal and noise respectively. The estimated function that is the discrete estimator F̂ =
(f̂1, f̂2, . . . , f̂n) will be judged by its expected mean square error 1

n
E‖f̂ − f‖22,n.
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In this paper we work on estimating the function f by shrinking the wavelet coefficients.
The threshold value to shrink the empirical wavelet coefficient is crucial. We have suggested
a threshold value which gives a better approximation of the true curve for moderate data.

The paper is organized as follows. In Section 2 we provide some necessary mathemat-
ical background and terminology in relation to wavelets. The concept of Discrete wavelet
transform (DWT) and the non-linear estimation procedure for the estimation of function is
presented in Section 3. In Section 4 we give a brief review about the choice of threshold.
We propose a new threshold value and compare its performance with minimax and universal
threshold values through simulations. We conclude the paper with some comments in the
last section.

2. WAVELET OVERVIEW

Wavelets are functions specially made as to form an orthonormal basis for various function
spaces. One such example is L2(R), set of all square integrable function on R. It can be
shown (Daubechies (1992), Meyer (1992)) that it is possible to construct a function ψ(x) so
that if f ∈ L2(R), then

f(x) =
∑
k∈Z

c0,kφ0,k(x) +
∑
j<J

∑
k∈Z

dj,kψj,k(x) (3)

where c0,k =
∫
R
f(x)φ0,k(x)dx and dj,k =

∫
R
f(x)ψj,k(x)dx, and j controls the maximum

resolution. The function ψj,k = 2j/2ψ(2jx − k) which is derived from the function ψ(x)
by dilation and the translation is called the mother wavelet. The function φ0,k(x) are all
derived from a function φ(x) known as father wavelet or scaling function by using dilation
and translation formula φ0,k = φ(x− k). Wavelets have a built in ”Spatially adaptive” that
allows efficient estimation of functions with inhomogeneity, discontinuities in derivatives,
sharp spikes and discontinuity in the function itself.

3. ESTIMATION OF FUNCTION

3.1 Discrete Wavelet Transform

Usually in statistical problem we have finite set of discrete data. If we have n = 2J value of
y(x) equally spaced between 0 and 1. we use wavelets at levels j = 0, 1, 2, . . . , J − 1, where
k = 1, . . . , 2j − 1. Level 0 contains the mother and father wavelets while increasing value
of j corresponding to wavelet which describes finer details. If y = (y(x1), y(x2), . . . , y(xn))T ,
then

y(xi) = c0,0φ(xi) +
J−1∑
j=0

2j−1∑
k=0

dj,kψj,k(xi) (4)

The vector w = (c0,0, d0,0, . . . , dJ−1,2j−1)
T is referred as the DWT of y. The DWT may be

represented by n × n unitary matrix W , (WW T = W TW = In). In practice the DWT
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can be performed using the algorithm of Mallat (1989) with O(n) operation rather than the
slow O(n2) matrix multiplication. In equation (4 the coefficient vector w can be obtained
by using DWT to the given data y = (y1, y2, . . . , yn) which assumes the model (1) and in
vector notation as the model (2). Let DWT of Y be w = WY = d + ε, where d = WF ,
and ε = WE respectively. Our goal is to recover F from the noisy data Y. Equivalently we
estimate the true wavelet coefficient from the empirical wavelet coefficient.

3.2 Non-linear Estimation

Donoho and Johnstone (1994, 1995) and Donoho et al. (1995) proposed a non-linear esti-
mator of f based on a reconstruction from a more judicious selection of empirical wavelet
coefficients. This approach is now widely used in statistics particularly in signal processing
and image analysis, former is known as de-noising and later one is image compression. From
the statistical approach, the model (1) is a regression model over time and this method can
be viewed as a non-parametric estimation of the function f using orthonormal basis.

Donoho et al. (1995) advise that shrinking wavelet coefficient will remove the noise of
the signal. To achieve shrinkage they propose thresholding the empirical wavelet coefficients.
Given the empirical wavelet coefficients and a threshold λ > 0 the hard threshold value is
given by

δH(w, λ) = wI(|w| > λ) (5)

which is a ”keep or kill” rule, and the soft threshold value is given by

δs(w, λ) = Sign(w)(|w| − λ)I(|w| > λ) (6)

which is shrink or kill rule.

There are some other thresholding rules, some of them are firm thresholding studied
by Gao and Bruce (1997), SCAD threshold by Antoniadis and Fan (2001). The hard and
soft thresholding rules are the most commonly used among the various wavelet thresholding
estimators. The thresholded wavelet coefficient obtained by applying any of the thresholded
rule δ(w, λ) given in (5) or (6) are used to obtain a selective reconstruction of the response
function f . The resulting estimate can be written as

f̂λ(t) =
2j0−1∑
k=0

ˆc0,k√
n
φj0,k(t) +

j−1∑
j=j0

2j−1∑
k=0

δ(λ, ˆdj,k)√
n

ψj,k(t). (7)

The value
√
n appear because of the different normality condition of continuous and discrete

wavelet transform.

In the above case the vector f̂λ of the corresponding estimator can be derived by sim-

ply performing IDWT of
{

ˆco,k, δλ( ˆdj,k)
}

and the resulting 3 step selective reconstruction

estimation procedure that can be summarized by the following diagram.

y DWT−−−→
{

ˆcjo,k, ˆdj,k

}
Threshold−−−−−−−→

{
ˆco,k, δλ( ˆdj,k)

}
IDWT−−−−→ f̂λ. (8)
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4. THE CHOICE OF THRESHOLD

Clearly, an appropriate choice of the threshold value λ is fundamental to the effectiveness of
the procedure described in the previous section. Too large threshold might cut off important
parts of the true function underlying the data whereas too small a threshold retain noise in
a selective reconstruction. Donoho and Johnstone (1994) proposed minimax threshold that
depends on the data size n, defined as λM = σ̂λ∗n where λ∗n is defined as the value of λ which
achieves

Λ∗n = inf
λ

sup
d
{Rλ(d)/(n−1 +Roracle(d))} (9)

where Rλ(d) = E[δλ(d̂) − d]2 and Roracle(d) is the ideal risk achieved with the help of an
oracle.

As an alternative to minimax threshold Donoho and Johnstone (1994) proposed the
universal threshold λ = σ̂

√
2 log n, which is also asymptotically optimal and simpler to

implement. Comparing to the minimax the universal threshold value is substantially large.
Universal threshold safeguards against allowing spurious noise into the reconstruction. This
is due to the fact that if z1, z2, . . . , zn, represent iid N(0, 1) sequence, then as n converges to
∞

Pr{max
i
|zi| >

√
2 log n} −→ 0. (10)

Essentially (10) says that the probability of all the noise being shrink to zero is very high
for large samples. Since the universal threshold is based on this asymptotic result, it does
not always perform well in small sample situations. To improve the finite sample properties
of the universal threshold, Donoho and Johnstone (1994) suggested that one should always
retain coefficients on the first j0 coarse level even if they do not pass the threshold. Hall
and Patil (1996a) and Efromovich (1999) proposed to start thresholding from the resolution
level j0 = log2(n)/(2r + 1), where r is the regularity of the mother wavelet.

Various alternative data adaptive methods for selecting threshold for wavelet function
estimation have been developed. For example Donoho and Johnstone (1995) proposed a
sure shrink thresholding rule based on minimizing unbiased risk estimate, Nason (1996) have
considered cross validation approach to the choice of λ. The multiple hypothesis procedure
is developed by Abramovich and Benjamin (1995,1996). Further modification of the basic
thresholding scheme include level dependent and block thresholding. In the first case different
thresholds are used on different levels, where as in the second the coefficient are thresholded
in blocks rather than individually. Both modification imply better asymptotic properties of
the resulting wavelet estimators, for example see Donoho and Johnstone (1998), Hall et al.
(1998).

The universal threshold which is also known as visushrink has worse mean square error
performance for small and moderate samples. The minimax method does a better job at
picking up abrupt jumps at the expense of smoothness in contrary, the universal policy gives
smooth estimate that don’t pick up jumps or other features.
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Table 1: Threshold values
J n = 2J Minimax

√
J

√
2 log n

07 00000128 1.669 2.646 3.115
08 00000256 1.860 2.828 3.330
09 00000512 2.048 3.000 3.532
10 00001024 2.232 3.162 3.723
11 00002048 2.414 3.316 3.905
12 00004096 2.594 3.464 4.079
13 00008192 2.773 3.605 4.245
14 00016384 2.952 3.742 4.405
15 00032768 3.131 3.873 4.560
16 00065536 3.313 4.000 4.710
17 00131072 3.503 4.123 4.855
18 00262144 3.686 4.243 4.995
19 00524288 3.869 4.359 5.132
20 01048576 4.052 4.472 5.265
21 02097152 4.234 4.582 5.395
22 04194304 4.417 4.690 5.523
23 08388608 4.600 4.795 5.647
24 16777216 4.783 4.895 5.768
25 33554432 4.966 5.000 5.887

By considering the above facts we proposed a threshold value σ̂
√
J or σ̂

√
log n/ log 2,

where J is the power of 2 in the sample of size n and n = 2J . Here σ̂ can be calculated
using robust estimate of the noise level σ based only on the empirical wavelet coefficients at
the finest resolution level proposed by Donoho and Johnstone (1995). The robust estimate
of the noise level is given by

σ̂ = median(| ˆdJ−1,k| : for, k = 0, 1, 2, ...2J−1 − 1)/0.6745 (11)

In contrary to the minimax and the universal threshold this proposed threshold works well
for the moderate samples, also up to a certain range of data our threshold value lies between
minimax and the universal threshold proposed by Donoho and Johnstone (1994). From the
Table 1 we can see that our threshold value is close to the minimax threshold for large values
of n, the size of the data.

Fig. 1 shows the four spatially inhomogeneous functions, Blocks, Bumps, Doppler and
Heavisine for n = 4096. The formulae are given in Donoho and Johnstone (1994). Fig.
2 shows the noisy version of the four inhomogeneous functions of interest, rescale to have
signal to noise ratio (SNR) = 7. Fig. 3 shows the selective wavelet reconstruction using the
minimax threshold value, that gives a reconstruction with a minimum risk. Fig. 4 shows the
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reconstruction using universal threshold, that gives a smooth reconstruction. Fig. 5 shows
the reconstruction using the proposed threshold, that gives smooth reconstruction compare
to minimax and little bit noisier but improved risk compare to universal policy for moderate
data. In all the reconstructions the threshold is applied to the coefficients from level j = 0
to J − 1 using the soft threshold rule.

Figure 1: Original functions, Blocks, Bumps, Doppler and Heavisine with n = 4096.

The threshold value σ̂
√
J which depends on the power of 2 in data of size n = 2J com-

pare to the universal threshold has improved mean square error, this is because the proposed
threshold value is small compare to universal threshold value. Also as the size of the data
increases the risk will be reduced at the expense of smoothness. Table 2 illustrates the com-
parative performance of the minimax, universal and the proposed threshold values in terms
of mean square error ‖f̂ − f‖22,n/n from 10 replications of the four spatially inhomogeneous
functions Blocks, Bumps, Doppler and Heavisine.
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Figure 2: Four functions, Blocks, Bumps , Doppler and Heavisine with Gaussian white noise,
σ = 1, SNR = 7.

Figure 3: Reconstruction of (a) Blocks, (b) Bumps, (c) Doppler, and (d) Heavisine with soft
thresholding using minimax policy.
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Figure 4: Reconstruction of (a) Blocks, (b) Bumps, (c) Doppler, and (d) Heavisine with soft
thresholding using universal policy.

Table 2: MSE Performance of the minimax, universal and the proposed threshold values.

Blocks

J n = 2J Minimax
√

2 log n
√
J

08 00256 0.854 2.394 1.853
09 00512 0.688 1.768 1.345
10 01024 0.498 1.223 0.937
11 02048 0.357 0.815 0.620
12 04096 0.244 0.521 0.392
13 08192 0.161 0.334 0.250
14 16384 0.104 0.204 0.156

Bumps

J n = 2J Minimax
√

2 log n
√
J

08 00256 1.110 2.809 2.093
09 00512 0.785 2.083 1.580
10 01024 0.572 1.414 1.060
11 02048 0.383 0.863 0.662
12 04096 0.236 0.527 0.398
13 08192 0.144 0.307 0.231
14 16384 0.088 0.179 0.136

Doppler

J n = 2J Minimax
√

2 log n
√
J

08 00256 0.444 1.290 0.952
09 00512 0.302 0.787 0.609
10 01024 0.210 0.503 0.399
11 02048 0.136 0.307 0.232
12 04096 0.079 0.184 0.136
13 08192 0.043 0.105 0.074
14 16384 0.027 0.057 0.043

Heavisine

J n = 2J Minimax
√

2 log n
√
J

08 00256 0.234 0.542 0.421
09 00512 0.157 0.351 0.277
10 01024 0.114 0.244 0.188
11 02048 0.078 0.155 0.122
12 04096 0.049 0.095 0.079
13 08192 0.031 0.063 0.047
14 16384 0.021 0.041 0.030
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Figure 5: Reconstruction of (a) Blocks, (b) Bumps, (c) Doppler, and (d) Heavisine with soft
thresholding using the threshold value sqrt(J).

5. COMMENTS AND CONCLUSIONS

In this paper a new threshold value is proposed for the estimation of function using wavelets.
We used this threshold value to estimate the true curve by de noising the noisy signals. We
have measured the mean square error performance of the proposed threshold value with the
existing threshold values and found to be better than universal threshold and for large data
the proposed threshold value has MSE close to the minimax threshold value.

The existing minimax and the universal threshold values are close to each other for
large values of n, but for moderate data the universal threshold gives a smooth estimate
with large MSE and minimax estimator gives small MSE at the cost of smoothness. The
proposed threshold value gives a smooth estimate of the true curve with improved MSE.
Usually in practice the moderate data is much in use, and in this sense our threshold value
is an important contribution to the choice of the threshold values in curve estimation using
wavelets.
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ABSTRACT 

 

The ASEAN countries which located on the Southeast Asian consist of 10 countries. Most of 

these countries depend on US as their main trading partner. As a result, if something does happen 

to US economy it surely will affect the economy of all these countries. Usually stock market 

fluctuation is used as the main indicator whether the economy of one country is in expansion or 

recession. Therefore, in this paper, we investigate the impact of US stock market fluctuation on 

four ASEAN countries stock markets namely Singapore, Indonesia, Thailand and Malaysia. 

Rather than using linear VAR model we used a two regimes multivariate Markov switching 

vector autoregressive (MS-VAR) model with regime shifts in both the mean and the variance to 

show how US stock market affect the four stock markets. Results reveal that when US stock 

market declines the four stock markets would also follow the same trend of declines and vice 

versa. In addition, the MS-VAR model fitted the data better than the linear vector autoregressive 

model (VAR). 

 

1. INTRODUCTION 
 

The Association of Southeast Asian Nation or ASEAN was established in 1967 consists of 10 

countries namely Indonesia, Malaysia, Philippines, Singapore, Thailand, Brunei, Laos, 

Cambodia, Vietnam and Myanmar. One of the purposes of the ASEAN association was to 

accelerate economy growth, social progress and cultural development in the region. All the 

countries not only have a trade agreement between each other but they also have the same main 

trading partner outside the region. Many investors are attracted to invest in ASEAN region 

because of low wages labour, a lot of raw materials and many attractive incentives from the 

government of each country to the investors. US were the biggest trading partner follow by Japan 

then China and India was not far behind. Except for Singapore all the other countries are 

developing countries.  
It is well known that US is main trading partner of many developing countries. Therefore, 

whatever happens to the US economy will also affect the economy of these countries. Usually 
the declining and increasing of the stock market is used as an indicator whether a country is in 
recession or expansion. This inter-relationship phenomenon in international market is not only a 
result of the liberalization of capital markets in developed and developing countries and the 
increasing variety and complexity of financial instrument but also a result of the increasing 
relatively of the developing and developed economies as developing countries become more 
integrated in international flow of trade and payment. As a result, this has triggered the interest 
of economists and policy makers to find the linkages between the stock market of developed 
countries mainly the US and the stock market of developing countries. 
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Numerous related studies on the relationship between stock market of US and developing 
countries have been done by researchers. For instance, Ghosh et al. (1999) examined whether the 
stock markets of nine Asian-Pacific countries are driven by US or Japan stock market during the 
financial turmoil in 1997 using the theory of cointegration. They had identified nine stock 
markets which can be divided into three groups; those that move with the US stock market, those 
that move with Japan stock market and those that are not affected by the two stock markets. Then 
Arshanapalli and Kulkarni (2001) studied the interdependence between Indian stock market and 
the US stock market and the results showed that the Indian stock market was not interrelated 
with the US stock market. 

Later, Yang et al (2003), investigated the long run relationship and short-run dynamic causal 
linkages among the US, Japanese, and ten Asian emerging stock markets. They discovered that 
both long-run cointegration relationships and short-run causal linkages among these markets 
were strengthened during the financial crisis in 1997 and that these markets have generally been 
more integrated after the 1997 crisis than before the crisis. Wang et al. (2003) studied 
relationship among the five largest emerging African stock markets and US market and 
uncovered that both long-run relationships and short-run causal linkages show that regional 
integration between most of African stock markets was weakened after the 1997–1998 crisis. 
Finally, Serrano and Rivero (2003), revealed the mixed results on the existence of long run 
relationship due to structural breaks between the US and Latin Americans stock markets. 

It appears that most of the research mention above did not focus on the ASEAN region 
specifically. Furthermore all the papers used similar methodology to analyze the interaction 
among the stock market. They begin their studies by finding whether the variables are 
cointegrated or not using cointegration test and followed by modelling the variables using Vector 
Autoregressive (VAR) or Vector Error Correction (VEC) to show the existent of short run or 
long run relationships among the variables. However in this paper we focus on finding the 
relationship between 4 ASEAN countries stock markets and the US stock markets. We also 
apply a different approach to study the interaction between the US and the four stock markets. 
Rather then finding linear interaction, we concentrate on investigate whether nonlinear 
interaction because of common regime switching behaviour exists among the stock markets by 
assuming that all the series are regime dependent. We use a two regimes multivariate Markov 
Switching Vector Autoregressive (MS-VAR) model with regime shifts that happened in both the 
mean and the variance to extract common regime switching behaviour from all the series.  

This paper is organized as follows. The specification and estimation of the Markov Switching 
Vector Autoregressive model are given in Section II. Section III presents the empirical results 
and discussion on the results. Section IV contains the summary and the conclusion. 

 

2. MARKOV SWITCHING VECTOR AUTOREGRESSIVE (MS-VAR) MODEL 
 

Hamilton in 1989 developed the Markov Switching Autoregressive model (MS-AR) to identify 
changes between fast and slow growth regimes in the US economy. The model assume that a 

time series, ty  is normally distributed with i  in each of k  possible regime where 1,2,...,i k . A 

MS-AR model of two states with an AR process of order p , ( )MS AR p  is given as follows: 
 

                                          
    

 
1

2~ 0, 1,2

  



 



 
    

 




p

t t i t i t i t

i

t t t

y s y s u

u s NID and s

                                                       (1) 

where  i are the autoregressive parameters with 1,2,...,i p . 
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The MS-AR framework of Equation (1) can be readily extended to MS-VAR model with two 
regimes that allows the mean and the variance to shifts simultaneously across the regime. The 
model is given below: 
 

                                           
      

    
1 1 1 ... 

 

 

 

   

  

t t t t t

p t t p t p t

Y s A s Y s

A s Y s
                                (2) 

 

where  1 ,...,t t ntY Y Y is the n  dimensional time series vector,   is the vector of means, 1,..., pA A  

are the matrices containing the autoregressive parameters, and  t
 is the white noise vector 

process such that   ~ 0, t t ts NID s  Other specifications of MS-VAR model are being discussed 

by Krolzig (1997). 

From Equation (1) and (2), 
ts  is a random variable that triggers the behaviour of 

tY  to change 

from one regime to another. Therefore the simplest time series model that can describe a discrete 

value random variable such as the unobserved regime variable ts  is the Markov chain. Generally, 

ts  follow a first order Markov process where it implies that the current regime 
ts  depends on the 

regime one period ago, 
1ts  and denoted as: 
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                                                                    (3) 

 

where ijp is the transition probability from one regime to another. From m  regimes, these 

transition probabilities can be collected in a  m m  transition matrix denoted as P . 
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with 
1

1, 1,2,..., 0 1
m

ij ij

j

p i m and p


    .  

The transition probabilities also provide the expected duration that is the expected length the 

system is going to be stay in a certain regime. Let D  define the duration of regime j . Then, the 

expected duration of the regime j  is given by 

 

                                              
1

1,2,...
1 jj

E D j
p

 


                                                                     (5) 

 

The conventional procedure for estimating the model parameters is to maximize the log-

likelihood function and then use these parameters to obtain the filtered and smoothed inferences 

for the unobserved regime variable ts . However, this method becomes disadvantageous as the 

number of parameters to be estimated increases. Generally, in such cases, the Expectation 

Maximization (EM) algorithm is used. This technique starts with the initial estimates of the 

unobserved regime variable, ts  and iteratively produces a new joint distribution that increases 

the probability of observed data. These two steps are referred to Hamilton (1994) and Kim and 

Nelson (1999). 
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3. MODELLING DYNAMIC RELATIONSHIP 

 

This section presents the results of the econometric specifications used for modelling the 

relationship between US and four ASEAN countries stock markets. It begins with a description 

of the data and testing for stationary using two unit root tests. Then if the data is stationary at the 

same order, Johansen test is used to examine the existent of cointegration. Later, the MS-VAR 

model is used to show the dynamic relationships. 
 

3.1 Data 
 

The data under investigation are 10 years old monthly average data from August 1999 until Julai 

2009 which includes US Dow Jones Index (DWJON) and four ASEAN stock markets namely 

Kuala Lumpur Composite Index (KLCI), Jakarta Composite Index (JKI), Singapore Straits Time 

Index (STI) and Thailand Composite Index (TSI). Figure 1 and Figure 2 show the behaviour of 

the original and return series (which is the first difference of natural logarithms multiplied by 

100 to express them in percentage terms) of the DWJON Index, the KLCI Index, the JKI index, 

the STI index and the TSI Index over the study period. Close inspection of the two figures 

reveals that the trend of up and down in the original series and the large positive and negative 

returns happen quite similar for the five series.  
 

3.2 Stationarity and Cointegration Tests 

 

Many of the econometric models require the knowledge of stationarity and order of integration 

for the variables. The unit root test is usually used to determine whether the order of integration 

of a variable is at level or first differences. Two of the common unit root tests are used in this 

paper namely the ADF test and the PP test. Besides that the two tests have been implemented 

with and without time trend. The ADF test was developed by Dickey and Fuller (1979) and the 

PP tests was suggested by Philips and Perron (1988).  

From Table 1, most of the statistics for series at level are not significant. This suggests that 

the null hypothesis of unit root test cannot be rejected and the indices are not stationary at level. 

After first differencing has been employed for the series, the null hypothesis of unit root test can 

be rejected at 1% level of significance for series with or without trend, Thus, the series are 

stationary at first difference and integrated of order 1, I(1). Thus, the cointegration test can be 

carried out after all the series are integrated at the same order. 

The Johansen and Juselius (1990) cointegration test or JJ test is carried out to examine the 

existence of the long-run relationship among the indices. This test identifies the number of the 

cointegration vector by using the maximum likelihood method. Two test statistics are used to test 

the presence of r cointegrating vectors, namely trace statistic and maximum eigen statistic. The 

existence of cointegration among the variables indicates the rejection of the non-causality among 

the variables. The result of the cointegration test is shown in Table 2 and r represents the number 

of the cointegration relationships of the hypothesis test. 

According to Table 2, both trace statistic and maximal eigen statistic suggests that there is no 

cointegrating vector at 5% level of significance. Thus, each indices does not sustain a stable 

equilibrium relationship with each other’s therefore, this suggests that there is no long-run 

cointegration among the indices. Next we modeled the relationship among the return series using 

MS-VAR model. 
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Figure 1: Original Series 

 
Figure 2: Return Series 
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Table 1 The Two Unit Root Tests 
 

ADF test for sector indices 

Variables Level 1
st
 Differentiation 

No Trend Trend No trend Trend 

DWJON -1.702 -1.642 -10.117** -10.102** 

STI -1.356 -1.838 -9.503** -9.015** 

TSI -1.278 -1.524 -9.639** -9.610** 

JKI -0.429 -2.064 -9.323** -9.139** 

KLCI -1.209 -2.031 -9.840** -9.796** 

PP test for sector indices 

Variables Level 1
st
 Differentiation 

No Trend Trend No trend Trend 

DWJON -1.729 -1.671 -10.096** -10.064** 

STI -1.542 -2.063 -9.059** -9.021** 

TSI -1.487 -1.926 -9.668** -9.638** 

JKI -0.669 -2.371 -9.323** -9.139** 

KLCI -1.383 -2.299 -9.855** -9.811** 

Note:** indicates significance at 5% 

 

 

Table 2 JJ Cointegration Test for Indices 

Null 

hypothesis 

Trace Max-eigen 

Statistic 5% critical 

value 

Statistic 5% critical 

value 

0r   56.47 68.52 26.68 33.46 

1r   29.78 47.21 17.68 27.07 

2r   12.09 29.68 6.55 20.97 

3r   5.54 15.41 3.79 14.07 

4r   1.74 3.76 1.74 3.76 

 

 

3.3 Estimating MS-VAR Model 

 

Following the principle of parsimony, we found that two regimes Markov Switching Vector 

Autoregressive model of order one with switching in the mean and the variance or MS-VAR(1) 

manage to capture the interaction among the five series very well. Before further discussing the 

estimation model, we need to determine whether regime shifts happened in the five return series. 

For this purpose, we use the likelihood ratio (LR) test suggested by Garcia and Perron (1996). As 

denoted in Table 3, the likelihood ratio test for testing the null hypothesis of linear model against 

an alternative of regime switching model, it is found that the null hypothesis can be rejected 

because the Davies (1987) p-value (value in the [] bracket) show significance results. Therefore, 

a nonlinear MS-VAR(1) model is better than linear VAR(1) model in describing the data. 

Moreover, the minimum value of AIC (Akaike), HQC (Hannan-Quinn) and SBC (Schwartz 

Bayesian) criteria indicate that the performance of the MS-VAR(1) models are better than the 

nested linear VAR(1) model. 
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Table 3 Model Comparison 

 MS-VAR(1) Linear VAR(1) 

Log-likelihood  -1699.1097 -1765.3312 

AIC 29.9341 30.6836 

HQC 30.5728 31.1126 

SBC 31.5072 31.7402 

Log-likelihood Ratio (LR) Test 132.4430 [.000] 

 

Table 4 reports the parameters estimated of the two regimes MS-VAR (1). It can be seen from 

Table 4 that the estimated means of the MS-VAR(1) model for each of the two regimes has a 

clear economic interpretation. The first regime  1ts   indicates that all the stock market indices 

are in the Bear market or contraction phase with negative sign of the monthly expected return, 

 1ts   and higher volatility,  2 1ts   Conversely, the second regime captures the Bull market 

or expansion phase of the stock market indices with positive sign of the monthly expected return, 

 2ts   and lower volatility  2 2ts  . However, the probabilities of staying in regime 1 and 

regime 2 are almost the same 0.8678 and 0.8660 respectively. It means on average the duration 

of staying in either regime is 7 to 8 months. 

Furthermore, the main advantage of using MS-VAR model is that it provides us with 

smoothed regime probability plots of regime 1 and regime 2 which are the probability of staying 

in either regime 1 or regime 2 at time t. As seen in Figure 2, the smoothed probabilities of regime 

1 are near one just after the smoothed probabilities of regime 2 are near zero. While Table 5 

stated all the dating of staying in each regime. This means the smoothed regime probability plot 

tell us at which point in time all the series follow the same behavior which is either all the 

indices are increasing (regime 2) or decreasing (regime 1). 

 

Table 4 Estimation of MS-VAR (1) model for Dynamic Relationship 

 DWJON
t
 STI

t
 TSI

t
 JKI

t
 KLCI

t
 

 Regime-dependent means 

 1ts   -1.4513 -1.8210 -1.6633 -1.5344 -0.4866 

 2ts   0.9551 1.8229 2.1968 3.6816 1.1531 

 Coefficients 

DWJON
1t
 0.00672 0.1267 0.0341 0.1871 0.0650 

STI 1t  0.2161 0.3698 0.4723 0.4017 0.2226 

TSI
1t
 -0.1129 -0.1158 -0.1738 0.0308 -0.0575 

JKI
1t
 0.0269 0.0319 0.0401 -0.0397 0.0945 

KLCI
1t
 -0.1150 -0.1676 -0.0502 -0.1857 -0.1261 

 Regime-dependent variances 

 2 1ts   6.8992 8.9063 9.1021 10.0091 7.0208 

 2 2ts   2.7194 2.5893 4.7544 4.0698 2.1378 

ijp  11 ts  21 ts   DE  

1ts  0.8678 0.1322 7.56 

2ts  0.1340 0.8660 7.46 
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As note on Table 5, the contraction period in early 2000 and 2001 happen because of the US 

economic downturn as the IT industry crash follow by the September 11 2001 attack on US. 

Nevertheless the longest contraction period happen from August 2007 until Mei 2009 with inline 

with the recession period in US. This is the longest and deepest recession period since 1930an 

recession. The recession period was triggered by the US housing market collapse and the ensuing 

global credit crisis. Until recently US recover from this recession and the MS-VAR model 

manages to capture it. The finding from Figure 3 and Table 5 ensure us that the suggestion of 

regime 1 as the state where all the stock markets are in the recession phase or the bear market 

and regime 2 as the state where all the stock markets are in the expansion phase or the bull 

market by using the estimated parameters is justified. 

 

 

 
Figure 3 Smoothed Probability Plots of the MS-VAR(1) model 

 

 

Table 5 Duration of Regime 1 and Regime 2 

Regime 1  1
t

s  

(Contraction Period) 

Regime 2  2
t

s  

(Expansion Period) 

2000:1 - 2000:2 [1.0000] 

2000:4 - 2000:10 [0.9306] 

2001:1 - 2002:1 [0.9546] 

2002:6 - 2002:12 [0.9933] 

2004:3 - 2004:5 [0.9536] 

2006:12 - 2007:4 [0.9917] 

2007:8 - 2009:5 [0.9643] 

1999:10 - 1999:12 [0.9197] 

2000:3 - 2000:3 [0.5211] 

2000:11 - 2000:12 [0.8532] 

2002:2 - 2002:5 [0.8517] 

2003:1 - 2004:2 [0.9719] 

2004:6 - 2006:11 [0.9891] 

2007:5 - 2007:7 [0.7993] 

2009:6 - 2009:7 [0.8924] 
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4. COMMENTS AND CONCLUSION 

 

In this paper we have discussed modelling the interactions of US stock market (DWJON) and 4 

ASEAN stock markets namely the KLCI (Malaysia), STI (Singapore), TSI (Thailand), and JKI 

(Indonesia). Results showed that the 4 ASEAN stock markets really depend on the increasing 

and decreasing of the US stock market. In addition the MS-VAR(1) model outperform linear 

VAR(1) in modelling the interaction. 

 

REFERENCES 
 

Arshanapalli, B and Kulkarni, M. S, (2001). Interrelationship between Indian and US Stock 

Markets. Journal of Management Research, 1, 141-148. 

Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present only under the 

alternative. Biometrika, 74, 33-43. 

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time 

series with a unit root. Journal of the American Statistical Association,  74,:427-431. 

Garcia, R. and Perron, P (1996). An analysis of the real interest rate under regime shifts. Review 

of Economics and Statistics, 78, 111-125. 

Ghosh, A., Saidi, R and Johnson, K. H. (1999). Who moves the Asia-Pacific stock markets-  US 

or Japan? Empirical evidence based on the theory of cointegration, The Financial Review, 34, 

159-170. 

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series 

and the business cycle. Econometrica,57, 357-384. 

Hamilton, J. D. (1994). Time Series Analysis. Princeton: Princeton University Press. 

Johansen, S and Juselius, K (1990). Maximum likelihood estimation and inference on 

cointegration with applications to the demand for money. Oxford Bulletin of Economics and 

Statistics, 52, 169–210. 

Kim, C. J. and Nelson, C. R. (1999). State-space Models with Regime Switching: Classical and 

Gibbs-sampling Approaches with Application. Cambridge: The MIT Press. 

Krolzig, H. -M. (1997). Markov-switching Vector Autoregression. Berlin: Springer. 

Phillips, P. C. B., and Perron, P. (1988). Testing for unit root in time series regression, 

Biometrika, 75, 335-346. 

Serrano, J. L. F. and Rivero, S. S. (2003). Modelling the linkages between US and Latin 

American stock markets. Applied Economics, 35, 1423–1434. 

Wang, Z., Yang, J and Bessler, D. A. (2003). Financial crisis and African stock market 

integration. Applied Economics Letters, 10, 527–533. 

Yang, J., Kolari, J. W. and Min, I. (2003). Stock market integration and financial crises: the case 

of Asia. Applied Financial Economics, 13, 477–486. 



805 

 

Proceedings of the Tenth Islamic Countries Conference on Statistical Sciences (ICCS-X), Volume II, 

The Islamic Countries Society of Statistical Sciences, Lahore: Pakistan, (2010): 805–816. 

 

THE RELATIONSHIP BETWEEN EDUCATION AND OCCUPATION 

USING FULLY AND PARTIALLY LATENT MODELS 
 

Faisal G. Khamis 1 , Muna F. Hanoon and Abdelhafid Belarbi
 

Faculty of Economics and Administrative Sciences, Al-Zaytoonah University of Jordan, Amman, 

Jordan 

E-mail: 1 faisal_alshamari@yahoo.com 

 

ABSTRACT 

 

Several studies have been carried out to examine the association between education and 

occupation. These studies were useful for the purpose of intervention and policy making. In this 

study we examined the relationship between education factor which includes three indicators: the 

percentages of population who achieved (primary, secondary and tertiary) education and 

occupation factor which also includes three indicators: the percentages of (CLASS1, CLASS2 

and CLASS3) of occupation by using fully and partially latent models. The data were collected 

from the information of 81 districts based on the census conducted in peninsular Malaysia in 

1995. The goodness of fit indices for the assumed models were examined. No significant 

relationship was found between the educational achievement and the occupation factor. This 

study is composed of a number of path-diagrams to create a picture for the socioeconomic status 

in Malaysia.  

 

Keywords: occupation, education, relationship, fully latent models, MIMIC models.   

 

1. INTRODUCTION 

 

The education of people in the community is potentially important because it may influence 

society in ways that affect everyone. For example, most hospitals and health centers in Malaysia 

were public, with financing from national sources, and were subjected to national quality 

regulations, but when many local people are well educated, it is perhaps easier to recruit 

qualified health for all the members of the family. Besides, education was a major determinant of 

income (Kravdal 2008). A low relative education was at least linked with low relative income. 

Blane, Brunner and Wilkinson (1996) stated that men and women with low educational 

attainment were the least likely or slowest to respond to the messages of health education. The 

results of Ross and Wu (1995) demonstrated a positive association between education and health 

and help explain why the association exists. (1) Compared to the poorly educated, well educated 

respondents were less likely to be unemployed, were more likely to work full time, to have 

fulfilling, subjectively rewarding jobs, high incomes and low economic hardship. (2) The well 

educated reported a greater sense of control over their lives and their health, and they had higher 

levels of social support. Duper (2008) used regression models to examine how education relates 

to low income and unemployment. 

Anderson (1980) stated that the integration of work-experience education within the 

curriculum helps to prepare the student for a practical, productive life, which means that 
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interpersonal skills can be developed through student-teacher-employer relationships. Also, 

work-experience education program guide the student into an awareness of his/her 

responsibilities as a citizen. Accumulating evidence suggests that a highly qualified workforce 

contributes substantially to a nation's economic competitiveness, particularly when a large share 

of the workforce had acquired skills and knowledge through higher education; and these findings 

applied to states as well as nations; where U.S states that improved opportunities for education 

and training beyond high school advanced their residents' employment prospects and the 

competitiveness of their overall workforce (Wanger 2006). The World Development Report 

(2006) suggested that although curricula and teaching methods had remained largely unchanged 

in developing countries over the years, employers were increasingly demanding strong thinking, 

communication, and entrepreneurial skills demands largely unmet by educational systems in the 

developing and transition economics.  

The literature on human capital accumulation indicated that high quality education at the 

primary level generates the highest returns, both at the primary level and all levels thereafter in 

both developing and transition countries. Fasih (2008) stated that, if the relationship of education 

and earnings is convex or linear, then expanding enrollment only at lower levels of education 

will not raise earnings substantially, and consequently not prove to be an effective means of 

helping people out of poverty. In developing and transitional countries such as Malaysia where 

there were large disparities in the quality of education between the rich and the poor, and where 

individuals were systematically sorted into high-quality schools by wealth, the poor were 

attained fewer skills for the same “quantity” of education. The policy option in such a case 

would be to counter the sorting process through the provision of choice of better schooling 

through, for example, school vouchers or better-quality publicly funded private schools for the 

poor (Angrist, Bettinger & Kremer 2006; Barrera-Osorio 2007). When Bertrand (1994) 

examined the education in terms of its usefulness as a preparation for employment, he stated that 

the theoretical analysis of education contribution to the productivity of labour and the methods 

used to forecast the quantitative, needs of the economy gave rise to considerable controversy and 

seemed to provide no more than very general indications. Also, Bertrand found that economy 

needs to provide enough jobs to meet demand, which is becoming an increasingly unlikely 

prospect in many countries and would call for some rethinking of education's role in this field. 

So the purpose of this research is to provide some implications for the policy makers regarding 

the increasing of opportunities for all members in the community to increase and enhance their 

levels of education. This increasing will probably increase the opportunities of getting a job and 

also enhance the levels of jobs with better environment and salary. It is not easy to decide which 

way higher education ought to go. It is clear that the modern economy demands a higher 

proportion of highly qualified personnel, but it is difficult to say to what extent. Levin and 

Rumberger (1989) stated that over-education stemmed from a more rapid increase in the number 

of university graduates was greater than offers of employment. The European trend towards 

extended study, for example, is certainly caused more by social demand than by the needs of the 

economy and will probably lead to frustration among young people, who will not always be able 

to find the high-level employment that they expect. 

In this study, structural equation modeling (SEM) was used, where SEM was defined as 

hybrid model since it was a mixed system of equations between structural equation and 

measurement equations. There were many advantages of SEM technique making it applicable in 

many situations. First SEM technique has several flexible assumptions, such as allowing for 

correlations between independent variables, thus providing solution for multicollinearity problem 
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in regression analysis. Second, SEM allowed for the use of factor analysis to reduce the 

measurement error by having multiple indicators (manifest variables) per latent (factor) variable. 

Third, SEM had a structural graph of attraction because it provides graphical modeling interface. 

Fourth, SEM provided mechanism for testing overall model rather than testing each individual 

coefficient in the model, so that complex relationships can be easily identified and understood. 

Fifth, SEM had the ability to test models with multiple dependents. Sixth, SEM had the ability to 

model the mediating latent variables.  

The SEM approach was convenient because it allows multiple measures of the same 

characteristic to be included in the model, where this approach may reduce potential bias from 

measurement error in the observed variables (Chandola 2005). As well as, SEM had 

characteristics which allow the results to be more informative compared to the more traditional 

applied multiple regression and path analysis techniques. Also, SEM allows a range of relations 

between variables to be recognized in the analysis compared to multiple regression analysis, and 

those relations can be recursive and non-recursive (Smith & Langfield-Smith 2004). Thus, SEM 

provides the researcher with an opportunity to adopt a more holistic approach to model building.   

 

2. MATERIALS AND METHODS 

 

2.1 Data 

 

The data were collected from the department of statistics (Malaysia, 1995) based on the census 

of 81 districts conducted in peninsular Malaysia. We must construct on the basis of the prior 

concept or statistical analyses, which particular indicators load on each latent variable. More 

precisely, we constructed the following latent variables with their respective indicators: 

 

Occupation factor: occupation latent factor includes three classes of occupation, starting from 

top to bottom in the income and social level were used as follows: CLASS1 included 

professional, administrative and managerial workers; CLASS2 included clerical workers; and 

CLASS3 included sales, and service workers. All classes were measured in percentages. These 

indicators described the type of occupation status for people living in the district.  

 

Education factor: education latent factor included three indicators: percentages of population 

who achieved (primary, secondary and tertiary) education. A strong public economy resulting 

from a high average education may allow more generosity with respect to social support, and 

high individual incomes may trigger the establishing of some smaller private health services. 

Another possibility is that a higher level of education may increase the chance that the individual 

has a well paid job in the advanced service sector, which may offer some health advantages. 

Education attainment may reflect a person’s capacity to absorb new information and to act on it 

(Nordstrom, Cnattingius & Haglund 1993). The focus was on education, which is readily 

available, often used, and theoretically meaningful indicator. 

 

2.2  Analysis 

 

Fully latent models: Fully latent models or SEM is an extension of standard regression models 

through which multivariate outcomes and latent variables can be modeled. SEM is more 

appropriate for this application than alternative causal modeling technique because they permit 
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specification of “measurement models”. SEM needs two types of models: the measurement 

model (outer model), which connects the manifest variables to the latent variables and the 

structural model (inner model), which connects latent variables between them. Slight to moderate 

departures from normality can be handled by the maximum likelihood (ML) method (Raykov et 

al. 1991). In the observed variables, we found slight departure from normality. ML estimates 

were quite robust to violation of normality assumption in the factor model (Bentler 1980; 

Joreskog & Sorbom 1982). The causal variable was called exogenous variable,  , and the effect 

variable was called the endogenous variable,  . Unexplained variation was referred to as 

disturbance. The aim was to test the synthesized model of relations between the latent variables, 

where the structural equation model can be written as: η= Bη+Γξ +ζ . Vectors η  and ξ  are not 

observed, instead vectors y  and x  are observed, such that:  

Measurement model for y : yy = Λ η+ε , and measurement model for x : xx = Λ ξ+δ . 

MIMIC or partially latent models: the term MIMIC stands for Multiple Indicators and Multiple 

Causes (Jöreskog & Sörbom 2001). MIMIC model involves two types of models: the 

measurement model (outer model), which relates the indicators to the latent variables and the 

structural model (inner model), which explain the relationship between latents. The structural 

equation model is: η= Γx+ζ , and measurement model for y :  y Λη ε , where y  is a 1p  

vector of response variables, x  is a 1q  vector of predictors, η  is an 1m  random vector of 

latent dependent, or endogenous variables, ε  is a 1p  vector of measurement errors in y , Λ  is 

a p m  matrix of coefficients of the regression of  y  on η . The coefficients of Λ  are the 

weights or factor loadings that relate the observed measures to the latents. The Γ  is an m q  

matrix of coefficients of the x -variables in the structural relationship. The elements of Γ  

represent direct causal effects of x -variables on  -variables. The ζ  is an 1m  vector of random 

disturbances in the structural relationship between η  and x , where in this study: 

3, 3 and 1p q m   . The random components in LISREL model were assumed to satisfy the 

following minimal assumptions: ε  is uncorrelated with η , ζ  is uncorrelated with x , and ζ  and 

ε  are mutually uncorrelated. The model is identified if there are two or more latents and each 

latent has at least two indicators (Bollen 1989; Kline 1998). The models under study were 

identified since each of education and occupation latent variables included three indicators. 

 

Parameter estimation: Parameter estimation was performed by ML estimation. The unknown 

parameters of the model are estimated so as to make the variances and covariances that are 

reproduced from the model in some sense close to the observed data. Obviously, a good model 

would allow very close approximation to the data. The proposed models are designed 

specifically to answer such questions as: Is the link between occupation and education myth or 

reality? From the previous studies, this link was reality in some countries but what about 

Malaysia? 

 

Fit indexes: Perhaps the most basic fit index was the likelihood ratio, which was sometimes 

called Chi-square (
2 ) in the SEM literature. The value of the 

2 -statistic reflects the sample 

size and the value of the ML fitting function. The fitting function is the statistical criterion that 

ML attempts to minimize and is analogous to the least squares criterion of regression. For a 

particular model to be adequate, values of indexes that indicate absolute or relative proportions 
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of the observed covariances explained by the model such as the Goodness-of-Fit Index (GFI), the 

Adjusted Goodness-of-Fit Index (AGFI), and Normed Fit Index (NFI) should be greater than 

0.90 (Bollen 1989; Hair et al. 1998). Comparative fit index (CFI) indicates the proportion in the 

improvement of the overall fit of the researcher’s model relative to a null model like NFI but 

may be less affected by sample size. CFI should be greater than 0.90 (Kline 1998) or Hu and 

Bentler (1999) endorsed stricter standards, pushing CFI to about 0.95. Another widely used 

index is the standardized Root Mean Squared Residual (SRMR), which is a standardized 

summary of the average covariance residuals. Covariance residuals are the differences between 

the observed and model-implied covariances. A favorable value of the SRMR is less than 0.10 

(Hu & Bentler 1999). Another measure based on statistical information theory is the Akaike 

Information Criterion (AIC). It is a comparative measure between models with different numbers 

of latents. AIC values closer to zero indicate better fit and greater parsimony (Bollen 1989; Hair 

et al. 1998).  

The parsimonious goodness-of-fit index (PGFI) modifies the GFI differently from the AGFI; 

where the AGFI’s adjustment of the GFI is based on the degrees of freedom in the estimated and 

null models. The PGFI is based on the parsimony of the estimated model (Hair et al. 1998), 

where this index varies between 0 and 1, with higher values indicating greater model parsimony. 

The Non-Normed Fit Index (NNFI) includes a correction for model complexity, much like the 

AGFI; a recommended value is 0.90 or greater (Hair et al. 1998). The Root Mean Square Error 

of Approximation (RMSEA) value below or equal to 0.08 is deemed acceptable (Hair et al. 

1998) or Hu and Bentler (1999) pushes RMSEA values to smaller than 0.06 and they considered 

it greater than 0.10 as poor fit. RMSEA is a measure to assess how well a given model 

approximates the true model (Bollen 1989). 

 

Path diagrams: A popular way to conceptualize a model was using a path diagram, which was a 

schematic drawing of the system (model) to be estimated. There were a few simple rules that 

assist in creating these diagrams: ovals represented latent variables. Indicators were represented 

by rectangles. Directional relations were indicated using a single-headed arrow. The expression 

“a picture is worth a thousand words” is a very apt one for SEM. Researchers who used SEM 

techniques often used path-diagrams to illustrate their hypotheses and summarize the results of 

the analysis. Figures 1 and 2 were shown a conceptualized path diagrams for the proposed 

models 1 and 2 respectively, explaining the parameters required to be estimated. 

The sample design included two latent factors. The education factor,  , which constructed 

from three indicators, 1 2 3, ,  and x x x , that represented three levels of education, primary, 

secondary and tertiary respectively. The occupation factor,  , which included also three 

indicators, 1 2 3,   and y y y  that represented CLASS1, CLASS2 and CLASS3 of occupation 

respectively. For model 1 the analysis included the following SEM model: 

 

,  ,  and y x         y Λ ε x Λ δ , 

 

and for model 2: ,  and y     Γx y Λ ε .  where, yΛ  and xΛ  represented a vector of 

factor loadings of order 3 1 ; ε  and δ  represented a vector of measurement errors of order 3 1  

for vectors y  and x  respectively;  Γ  represented a vector of parameters required to be estimated 

of order 1 3 .   
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Figure 1: Conceptualized path-diagram for model 1 represents all variables 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Conceptualized path-diagram for model 2 represents all variables 

 

 

3. RESULTS 

 

Every application of SEM should provide at least the following information: a clear and 

complete specification of models and variables, including a clear listing of the indicators of each 

latent; a clear statement of the type of data analyzed, with presentation of the sample correlation 

or covariance matrix; specification of the software and method of estimation; and complete 

results (Raykov et al. 1991). Table 1 showed Pearson correlation matrix, mean, and standard 

deviation for each indicator. As shown in Table 2, we provided several indexes of goodness of 

fit, allowing for a detailed evaluation of the adequacy of the fitted models. The simplest gauge of 

how well the model fits the data would be to inspect the residual matrix (Field 2000). The 

acceptable range of residual values was one in 20 standardized residuals exceeding 2.58  

strictly by chance (Hair et al. 1998). Both models had not resulted in standardized residuals 

exceed the threshold value, and most of them were found close to zero, indicating high 

correspondence between elements of the implied covariances matrix of vector, ( , )z y x , 

denoted as Σ  and the sample covariance matrix, S . For assessing the fitted model, a model was 

considered adequate if the p -value was greater than 0.05, as 0.05 significance level was 

recommended as the minimum acceptance level for the proposed model (Hair et al. 1998). From 

Table 2, it was found that p -value for the fitted models was greater than 0.05, indicating that the 
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proposed models were acceptable or adequate in interpreting the relationship between education 

and occupation. 

Bollen’s incremental fit-index values were examined as these are least biased due to non-

normality of variables and they were found most of them close to 0.95. Figures 3 and 4 explained 

the estimated parameters of fitted models 1 and 2 respectively. Model 1 and model 2 provided an 

excellent fit to the observed data as shown in Table 2, where for model 1 with )8(( 2  = 6.99, p-

value = 0.54) and for model 2 ( 2(6) 6.23, -value 0.40p   ). The estimated effect of education 

factor (labeled in Figure 3 as educ_ach) on occupation factor (labeled in Figure 3 as occupati) 

was found not significant with ( ˆ 0.12, 1.14t     ) based on fitted model 1. The estimated 

effects of education indicators on occupation factor were all found not significant with (

1 2 3
ˆ ˆ ˆ0.02, 0.51;  0.00, 0.08;  and 0.01, 0.09t t t           ) respectively. Model 1 and 

model 2 were considered non-nested models. Non-nested models differ in number of latent 

factors or indicators. We can use AIC measure to compare between non-nested models. Given 

two non-nested models, the one with the lowest AIC was preferred (Kline 1998). However, 

model 1 was slightly better than model 2 because its’ AIC was found somewhat less than AIC of 

model 2 as shown in Table 2.  

 

 

 
Figure 3: Path diagram shows the results of fitted model 1 

 

 

 
Figure 4: Path diagram shows the results of fitted model 2 
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Table 1: Pearson correlation matrix, Mean, and Standard Deviation (SD) for each variable 

Variables 
1y
 2y

 3y
 1x

 2x
 3x

 
Mean SD 

CLASS1, 1y  1.00      10.07 3.30 

CLASS2, 2y  0.88
**

 1.00     6.82 3.84 

CLASS3, 3y  0.66
**

 0.68
**

 1.00    18.36 4.98 

PR_EDC, 1x   -0.15 -0.16 -0.08 1.00   68.54 6.50 

SE_EDC, 2x  -0.14 -0.14 -0.14 0.91
** 

1.00  45.80 8.94 

TR_EDC, 3x  -0.12 -0.10 -0.11 0.71
** 

0.86
** 

1.00 6.17 3.28 
**

Correlation is significant at the 0.01 level (2-tailed) 

 

Table 2: Comparison between the proposed models using fit indexes 

Fit-indexes Model 1 Model 2 

Absolute-Fit measures   
2 -statistic( p -value) (d.f.) 6.99(0.54) (8) 6.23(0.40) (6) 

GFI 0.97 0.98 

SRMR 0.03 0.01 

RMSEA 0.000 0.001 

Incremental-Fit measures   

CFI 1.00 1.00 

AGFI 0.93 0.91 

NFI 0.98 0.98 

NNFI 1.00 1.00 

Parsimonious-Fit measures   

PGFI 0.37 0.28 

AIC 32.81 36.04 
2 -statistic = Likelihood-Ratio Chi-Square Statistic, GFI = Goodness-of-Fit Index, SRMR = Standardized Root 

Mean Square Residual, RMSEA = Root Mean Square Error of Approximation, CFI = Comparative fit index, AGFI 

= Adjusted Goodness-of-Fit Index, NFI = Normed Fit Index, NNFI = Non-Normed Fit Index (An old name for the 

NNFI is the Tucker-Lewis Index TLI), PGFI = Parsimonious Goodness-of-Fit Index, AIC = Akaike Information 

Criterion. 

 

4. DISCUSSION 

 

The role of this study was to review what was known about the role of education in improving 

the occupation opportunities with high level in both salary and social position. This subject was 

studied using several techniques and in this study structural equation modeling was used because 

we had several indicators for such latent factor. Bollen et al. (2001) argued that the latent factor 

approach had two advantages. First, this approach permits the integration of a range of measures 

or indicators of socioeconomic status (SES), thus avoiding the problems with choosing a single 

indicator. Secondly, this method allows greater control for measurement error. Ross and Wu 

(1995) concluded that high educational attainment proves health directly, and it improves health 

indirectly through work and economic conditions. In Pakistan for example, most studies 

analyzed the determinants of enrollment in school had found the association between household 
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income and girl's enrollment in school to be positive and statistically significant (Hazarika 2001; 

World Bank 2002). But the question in this paper is: what is the effect of education achievement 

on prosperity of the community represented by the occupation factor? Improvements to the 

quality and efficiency of basic education are urgently needed, in both developing and transition 

countries such as Malaysia. Therefore, policies are required to focus on (i) improving the 

efficiency of educational spending, so that the development of core skills does not require more 

years, and (ii) adapting the curriculum of basic as well as post basic education to develop the 

skills increasingly in demand in the global labor market: critical thinking, problem solving, and 

behavioral (that is, noncognitive) skills, as well as skills in information technology.  

If improving the quality and quantity of skills was part of any educational package, this 

doesn't mean the package should success unless the issue of job creation was addressed. The 

supply of adequate jobs for the labor market is important for any policy maker. However, it is 

not simply whether an adequate number of jobs exist, but whether these jobs are of adequate 

quality. For example, subsidies in tertiary education need to be accompanied by the creation of 

an environment conducive to investment and technological progress. In the absence of such an 

environment, countries will find their population emigration for better opportunities and 

governments will need to continue subsidizing education to compensate for weak effective 

demand. Different countries at different levels of economic development had diverse 

requirements for education (Fasih 2008). For example, a study by De-Ferranti et al. (2003) 

suggested that whereas East Asian countries might benefit from more secondary school 

graduates to fill their skill needs gap, Latin American countries, because of their wealth of 

natural resources, would benefit from more experts in manufacturing processes and more tertiary 

education graduates.  

It is essential to invest in quality early childhood education because the suggestion was: if the 

investment was made in developing the cognitive skills of children, the better the long-term 

impacts were for learning, skills development, and labor market outcomes. In a perfectly 

competitive labor market, skills such as motivation and ability may have higher value, thus 

people with higher ability may reap higher returns. From an education policy maker's point of 

view, this finding supports the importance of noncognitive skill development in schools and the 

education system as a whole. Also, the country context needs to be considered before 

recommending policy changes because decreasing returns from getting education could be the 

result of wage distortions caused by labor market rigidities. Expansion of higher education with 

no relation to job openings, and the resulting graduate unemployment, is the main cause of the 

brain drain which affects many of the developing countries, constituting a serious waste of 

resources.  

Rwomire (1992) stresses the fact that the development of education has simply given rise to 

the replacement of a poorly-educated work force by one with a higher level of education. The 

number of jobs not increased as quickly as the number of graduates, and therefore the higher 

level of instruction had been of no benefit to the economy. Von Borstel (1992) examined the 

conditions for the success of a form of education that included productive work, where 

productive work was subordinate to school curricula and responds to the aims of education. 

However, most probably there was a lack in productive work in the school curricula in most of 

districts' schools in Malaysia in 1995. Also, we encouraged to offer job opportunities for young 

people, which enabled them to avoid leaving school early and this means that those people will 

face difficulties to get better jobs either in income level, social level or both because they left 

their school early. As Chung (1993) pointed out, in many developing countries, the majority of 
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the population cannot get regular jobs in the modern sector and a large percentage were 

condemned to remain in a state of long-term under-employment. General and vocational 

education thus seemed increasingly out of touch with reality.  

 

5. CONCLUSION 

 

With respect to model fit, researchers do not seem adequately sensitive to the fundamental reality 

that there is no true model, and all models are wrong to some degree, even in the population, and 

that the best one can hope for is to identify a parsimonious, substantively meaningful model that 

fits observed data adequately well (MacCallum & Austin 2000). Given this perspective, it is 

clear that a finding of good fit does not imply that a model is correct or true, but only plausible. 

We found models 1 and 2 acceptable or adequate fit in interpreting the hypothesized 

relationships. The education factor and its indicators in Malaysia in 1995 do not affect 

occupation factor based on both models. This was consistent with the study by Fasih (2008) who 

was stated that just increasing the quantity of education at the lower educational levels didn’t 

raise earnings substantially, and thus not proved to be effective in helping people climb out of 

poverty. Education is a necessary but not sufficient condition for an individual to enjoy good 

occupation, where good occupation opportunities for the skilled require an economy as a whole 

to be operating well, with macroeconomic stability, an attractive investment climate, and 

efficient labor markets. The structures we had reported here as well as the strength of causal 

path-ways may vary depending on the specific nature and circumstances of the population under 

study. Further research is required in other developing countries. 
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ABSTRACT 
 

A multivariate chart, instead of separate univariate charts is used for a joint monitoring of several 

correlated variables. Two time weighted multivariate charts that are commonly used for a quick 

detection of small shifts in the mean vector are the multivariate exponentially weighted moving 

average (MEWMA) and multivariate cumulative sum (MCUSUM) charts. The MEWMA and 

MCUSUM charts use information from past data, which make them sensitive to small shifts. 

These charts require the assumption that the underlying process follows a multivariate normal 

distribution. This paper studies the robustness of the MEWMA and MCUSUM charts toward 

nonnormality by considering the multivariate Weibull and multivariate gamma distributions 

based on different sample sizes and correlation coefficients.   
 

1. INTRODUCTION 
 

In most process monitoring situations, the quality of a process is determined by two or more 

quality characteristics (Woodall and Montgomery, 1999). Process monitoring problems 

involving several related variables of interest are called multivariate statistical process control. 

The most useful tool used in the monitoring of a multivariate process is a multivariate control 

chart. The first step in constructing a multivariate chart involves the analysis of a preliminary set 

of data that is assumed to be in statistical control. This analysis is known as a Phase-I analysis 

and it is conducted to estimate process parameters that will be used for the monitoring of a future 

process, a.k.a., a Phase-II process.  

Numerous multivariate charts and their extensions are presently available. These charts can 

be grouped into 3 broad categories, namely, the Hotelling’s 2T , multivariate EWMA (MEWMA) 

and multivariate CUSUM (MCUSUM) charts. The Hotelling’s 2T  chart was proposed by 

Hotelling (1947) for the detection of a large sustained shift. The MCUSUM chart was first 

suggested by Woodall and Ncube (1985) while the MEWMA chart was introduced by Lowry et 

al. (1992). However, the MCUSUM charts suggested by Crosier (1988) will be discussed in this 

paper as they are more widely used.  

This paper is organized as follows: Section 2 reviews the MEWMA chart while Section 3 

reviews the MCUSUM chart. In Section 4, a simulation study is conducted to compare the 

performances of MEWMA and MCUSUM charts for skewed distributions. Finally, conclusions 

are drawn in Section 5. 
 

2. MEWMA CONTROL CHART 
 

The MEWMA chart proposed by Lowry et al. (1992) is based on the following statistic:  
 

1)1(  ttt ZXZ ,  for t = 1, 2, …,             (1) 

mailto:1mkbc@usm.my
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where 00 Z  and 0 <   1. ..., , , 21 XX  are assumed to be independent multivariate normal 

random vectors, each with p quality characteristics. The control charting statistic of a MEWMA 
chart is (Lowry et al., 1992) 

     tZt ZZ
t

12  tT .             (2) 

The chart signals a shift in the mean vector when 1

2 hTt  , where 1h  is the limit chosen to achieve 

a desired in-control ARL  0ARL  and  

       X

t

Zt
 2)1(1

2





             (3) 

is the variance-covariance matrix for tZ . Lowry et al. (1992) showed that the run length 

performance of the MEWMA chart depends on the off-target mean vector 1  and the covariance 

matrix of tX , i.e., 
tX  only through the value of the non-centrality parameter, 

          21 

01

1

01δ  


 

X ,           (4) 

where 0  denotes the in-control mean vector. 

Lee and Khoo (2006a) provide a method based on the Markov chain approach for the 

selection of the optimal parameters,  and 1h , which produce the minimum out-of-control ARL 

 1ARL  for a desired size of a shift of interest based on a fixed .ARL0  

 

3. MCUSUM CONTROL CHART 

 
Crosier (1988) suggested two multivariate CUSUM charts. The one with the better ARL 
performance is based on the following statistics: 
 

         21 

1

1

1 aXSaXS ttXtt 


 



 tC ,  for t = 1, 2, ...,          (5) 

where  

    
 


























 kC
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kC
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 if                                   ,

aXS
S

tt

t

1

0

.           (6) 

Note that ,00 S  k > 0 is the reference value and a is the aim point or target value for the mean 

vector. The control charting statistic for the MCUSUM chart is (Crosier, 1988) 

       211

tXt SS
 tY              (7) 

A shift in the mean vector is signalled when 2hYt  , where 2h  represents the limit of the chart. 

The MCUSUM procedure assumes that the multivariate observations ,tX  for t = 1, 2, ..., follow 

an independently and identically distributed (i.i.d.) multivariate normal distribution. Lee and 
Khoo (2006b) give an approach based on the Markov chain method in determining the optimal 

parameters, k and 2h  that give the minimum out-of-control ARL  1
ARL  for a size of shift of 

interest based on a fixed .ARL0  

 

4. A SIMULATION STUDY 
 

The assumption of the underlying process having i.i.d. multivariate normal random variates is 

required for both the MEWMA and MCUSUM charts. Since many multivariate processes, such 

as chemical processes come from populations that are skewed, it is difficult to satisfy the 
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multivariate normality assumption. In this section, the performances of the MEWMA and 

MCUSUM charts will be studied when the multivariate normality assumption is violated. 

The performances of the MEWMA and MCUSUM charts are compared based on the false 

alarm rates when the process is in-control for multivariate skewed distributions, such as the 

Lee’s multivariate Weibull (Lee, 1979) and Cheriyan and Ramabhadran’s multivariate gamma 

distributions (Cheriyan, 1941 and Ramabhadran, 1951). For the sake of comparison, the 

multivariate normal distribution is also considered. For convenience, the bivariate case, i.e., the 

number of quality characteristics, p = 2 is considered. Note that the bivariate Weibull distribution 

can represent various skewnesses and correlations but the bivariate gamma can only represent 

some positive correlations (Kotz et al., 2000). 

SAS programs are used to compute the false alarm rates for the three multivariate 

distributions considered. Each false alarm rate is computed based on 5000 simulation trials. The 

nominal false alarm rate is assumed to be  = 0.0027 when the underlying distribution is 

bivariate normal. The MEWMA and MCUSUM charts are designed for a quick detection of a 

shift in the mean vector of size  = 1. The optimal smoothing constant,  = 0.13 and limit 
1

h  = 

10.55 are found for the MEWMA chart using the approach described in Lee and Khoo (2006a). 

Similarly, using the procedure given in Lee and Khoo (2006b), the optimal parameters are found 

to be k = 0.5 and 
2

h  = 6.227 for the MCUSUM chart. 

The correlation coefficients,  = 0.3, 0.5 and 0.8 are considered for the bivariate 

distributions. For ease of computation, the sacle parameters of (1,1) for  1 2
,X X  are selected for 

the Weibull and gamma distributions. The shape parameters for  1 2
,X X  are chosen so that the 

desired skewnesses  1 2
,   = {(1,1), (1,2), (1,3), (2,2), (2, 3), (3,3)} for these parameters are 

attained. The sample sizes, n = 3, 5 and 7 are considered. 

The false alarm rates for the MEWMA and MCUSUM charts are given in Tables 1 and 2, 

respectively. Note that the false alarm rates, marked as “*” in Tables 1 and 2 for the Cheriyan 

and Ramabhadran’s bivariate gamma distribution cannot be computed because the corresponding 

shape parameters of one of the gamma distributed components, used in the transformation to 

compute variate 
2

X  have negative values. From Tables 1 and 2, it is found that for the 

multivariate Weibull and gamma distributions, the false alarm rates of the MEWMA and 

MCUSUM charts increase as the level of skewness and correlation coefficient increase. This is 

because the covariance matrix of the multivariate observation, X is inflated as the skewness and 

correlation coefficient increase, hence making it easier for the MEWMA and MCUSUM charts 

to issue out-of-control signals. Also note that the false alarm rate decreases as the sample size 

increases. This is consistent with the multivariate central limit theorem, where the sample mean 

vector of a multivariate skewed distribution approaches multivariate normality as the sample size 

increases. A comparison of the false alarm rates of the two charts show that generally the 

MEWMA chart has lower false alarm rates than the MCUSUM chart for various levels of 

skewnesses. Thus, the MEWMA chart is more robust than the MCUSUM chart.   

 

5. CONCLUSIONS 

 

In this paper, we have studied the performance of the MEWMA and MCUSUM charts for 

multivariate normal and multivariate skewed distributions. We found that the false alarms of 

both charts are affected by the skewness of the underlying distribution. Also, the sample size and 

correlation of the quality characteristics have an impact on the false alarm rates of the charts. The 
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simulation results show that the MEWMA chart has a lower false alarm rate than the MCUSUM 

chart when the underlying distribution is skewed. Since it is known that both the MEWMA and 

MCUSUM charts have equal performances in the detection of small shifts when the underlying 

process is multivariate normally distributed, the use of the MEWMA chart in process monitoring 

is recommended because the MEWMA chart is more robust towards skewed populations. 

 

APPENDIX 
 

Table 1. False alarm rates for the MEWMA chart when  = 0.13 and 
1

h  = 10.55 

Correlation 

coefficient 

Multivariate 

distribution 

Skewness coef.t Sample size, n 

 1 2
,   3 5 7 

 = 0.3 

Normal (0,0) 0.0025830 0.0026450 0.0026600 

Weibull 

(1,1) 0.0029040 0.0027250 0.0026130 

(1,2) 0.0035350 0.0031600 0.0030100 

(1,3) 0.0043070 0.0037940 0.0035010 

(2,2) 0.0041670 0.0035550 0.0033540 

(2,3) 0.0049280 0.0041320 0.0038270 

(3,3) 0.0056780 0.0047290 0.0043020 

Gamma 

(1,1) 0.0029980 0.0028110 0.0027850 

(1,2) 0.0034710 0.0031680 0.0030860 

(1,3) 0.0039560 0.0035100 0.0033090 

(2,2) 0.0040630 0.0036180 0.0032550 

(2,3) 0.0047300 0.0040400 0.0036070 

(3,3) 0.0053240 0.0043790 0.0039400 

 = 0.5 

Normal (0,0) 0.0025830 0.0026450 0.0026600 

Weibull 

(1,1) 0.0028690 0.0026110 0.0024610 

(1,2) 0.0037170 0.0032160 0.0030640 

(1,3) 0.0047470 0.0040950 0.0038720 

(2,2) 0.0044490 0.0037830 0.0035030 

(2,3) 0.0053900 0.0045610 0.0042110 

(3,3) 0.0062970 0.0052450 0.0048160 

Gamma 

(1,1) 0.0030340 0.0029600 0.0027750 

(1,2) 0.0036180 0.0031160 0.0030910 

(1,3) * * * 

(2,2) 0.0041920 0.0035860 0.0033770 

(2,3) 0.0047770 0.0039130 0.0036190 

(3,3) 0.0055110 0.0046630 0.0042070 

 = 0.8 

Normal (0,0) 0.0025830 0.0026450 0.0026600 

Weibull 

(1,1) 0.0033460 0.0027720 0.0025900 

(1,2) 0.0049340 0.0041010 0.0036990 

(1,3) 0.0070200 0.0060950 0.0057130 

(2,2) 0.0057440 0.0046370 0.0041530 

(2,3) 0.0071680 0.0059480 0.0054110 

(3,3) 0.0081140 0.0068870 0.0062570 

Gamma 

(1,1) 0.0032220 0.0030090 0.0029240 

(1,2) * * * 

(1,3) * * * 

(2,2) 0.0048070 0.0040280 0.0036410 

(2,3) * * * 

(3,3) 0.0064080 0.0053320 0.0047210 
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Table 2. False alarm rates for the MCUSUM chart when k = 0.5 and 
2

h  = 6.227 

Correlation 

coefficient 

Multivariate 

distribution 

Skewness 

Coef. 
Sample size, n 

 1 2
,   3 5 7 

 = 0.3 

Normal (0,0) 0.0026930 0.0027220 0.0027220 

Weibull 

(1,1) 0.0029440 0.0027420 0.0026800 

(1,2) 0.0035020 0.0031400 0.0030080 

(1,3) 0.0042500 0.0037290 0.0034920 

(2,2) 0.0036650 0.0033290 0.0031400 

(2,3) 0.0048150 0.0040180 0.0037430 

(3,3) 0.0055340 0.0045740 0.0041640 

Gamma 

(1,1) 0.0026930 0.0027220 0.0027220 

(1,2) 0.0029440 0.0027420 0.0026800 

(1,3) 0.0035020 0.0031400 0.0030080 

(2,2) 0.0042500 0.0037290 0.0034920 

(2,3) 0.0036650 0.0033290 0.0031400 

(3,3) 0.0048150 0.0040180 0.0037430 

 = 0.5 

Normal (0,0) 0.0026930 0.0027220 0.0027220 

Weibull 

(1,1) 0.0028180 0.0025440 0.0024610 

(1,2) 0.0036490 0.0031830 0.0030670 

(1,3) 0.0046620 0.0040150 0.0038180 

(2,2) 0.0043290 0.0036840 0.0034060 

(2,3) 0.0052570 0.0044200 0.0040660 

(3,3) 0.0061670 0.0050810 0.0046200 

Gamma 

(1,1) 0.0031260 0.0028970 0.0028610 

(1,2) 0.0034620 0.0032160 0.0029970 

(1,3) * * * 

(2,2) 0.0039720 0.0035540 0.0033110 

(2,3) 0.0047190 0.0039000 0.0035950 

(3,3) 0.0055250 0.0045230 0.0040310 

 = 0.8 

Normal (0,0) 0.0026930 0.0027220 0.0027220 

Weibull 

(1,1) 0.0030700 0.0026280 0.0024780 

(1,2) 0.0047220 0.0039330 0.0036050 

(1,3) 0.0068540 0.0059950 0.0056410 

(2,2) 0.0054640 0.0044190 0.0039710 

(2,3) 0.0068990 0.0056910 0.0051910 

(3,3) 0.0078760 0.0065890 0.0059620 

Gamma 

(1,1) 0.0032610 0.0029770 0.0028680 

(1,2) * * * 

(1,3) * * * 

(2,2) 0.0045670 0.0038680 0.0035700 

(2,3) * * * 

(3,3) 0.0062740 0.0052470 0.0044940 
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ABSTRACT 

 

Bayesian inference for multiple change-point problems is studied. We use a truncated Poisson 

distribution for the number of change-points and conjugate prior for the exponential family 

distributions. SAMC is adopted in order to overcome the analytic difficulties in computing the 

posterior distributions. We demonstrate how the proposed method can be made for real data. 

 

1. INTRODUCTION 

 

In many applications of statistics, including areas as diverse as quality control and tracking an 

object following a ballistics trajectory, we are interested in detecting changes in the parameters 

of the distribution of a sequence of independent observations. Finding the number of change-

points and their positions is one of the challenging statistical problems in which the dimension of 

the object of inference is not fixed. 

Chernoff and Zacks (1964) considered a Bayes test for mean change for the normal 

observations. Kander and Zacks (1966) generalized the result of Chernoff and Zacks (1964) to 

the one-parameter exponential family. Hinkley (1970) investigated the maximum likelihood 

estimates of one change-point problem. As a Bayesian approach for the change-point problem, 

Smith (1975) considered one change-point problem in distributional changes using Gibbs 

sampler. Yao (1984) derived Bayes estimates in the presence of additive Gaussian noise and a 

signal which is a step function. Carlin et al. (1992) formulated the hierarchical Bayesian Markov 

chain model and used Gibbs sampler. Belisle et al. (1998) made inference about Bayesian 

hierarchical change-point model with the ensemble of sample paths for neuron spike train data. 

In the multiple change-point setting, Venter and Steel (1996) identified multiple abrupt change-

points in a sequence of observations via hypothesis testing.  

Hawkins (2001) developed an approach with maximum likelihood estimates of the change-

points and within-segment parameters in the exponential family. For the Bayesian multiple 

change-point problem, Barry and Hartigan (1993) used a product partition model. Chib (1998) 

formulated the multiple change-point model in terms of a latent discrete state variable according 

to Markov process with transition probabilities. Stephens (1994) discussed the use of a sampling-

based technique, the Gibbs sampler, including the binomial data model. Fearnhead (2006) 

suggested the recursion algorithm to search the change-points successively. Bayesian methods 

are attractive for change-point models since they allow for flexible relationships between 

parameters in various subspaces and are computationally advantageous. 

In many of the Bayesian approaches, Markov sampling techniques have been used for the 

calculation of posterior probabilities. Due to the many possible partitions, the model space 

mailto:jaehee@duksung.ac.kr
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becomes complex with multiple modes, and the traditional Monte Carlo methods are prone to get 

trapped in local energy minima. Tierney (1994) developed a hybrid sampler in order to traverse 

freely across the combined parameter spaces. Green (1995) proposed reversible Markov chain 

samplers that jump between parameter subspaces of differing dimensionalities which are 

applicable for multiple change-point problems. Liang et al. (2007) proposed the stochastic 

approximation Monte Carlo (SAMC) algorithm effective for importance sampling and model 

selection. In this paper, we briefly review Bayesian multiple change-point inference and describe 

implementation of the computational technique, SAMC, that can be used to facilitate Bayesian 

technique in the complex problem. We give illustrations of the Bayesian solution to multiple 

change-point problems via several examples. In section 2 a general multiple change-point model 

is defined and the Bayesian inference is provided for exponential family distributions. Section 3 

describes briefly the SAMC algorithm applied to the multiple change-point problem. Section 4 

presents a numerical result with real data for multiple change-point estimation. Finally, section 5 

concludes the paper with a discussion. 

 

2. THE BAYESIAN MULTIPLE CHANGE-POINT MODEL 

 
Change-point identification is important in data analysis. Interest lies in making inference about 

the time or position in the sequence that the change occurred. This problem can be generalized to 

incorporate notions of multiple changes in the system, and arises when different subsequences of 

a data series follow different statistical distributions of the same functional form but have 

different parameters. Let ),,,( 21 nzzz Z  denote the independent observation sequence ordered 

in time. There exists a partition on the set },,2,1{ n  into blocks so that the sequence follows the 

same distribution within blocks. That is, the change-points divide the partitions. Let x =

)( 1n21 x,,x,x  be a binary vector with 1
21


kccc xxx   and being 0 elsewhere, 

ncccc kk  1100  .  

There are k  change-points in the model and k is unknown. The multiple change-point model 

can be written as follows: 

 

                                      rrrri cicfz  1),(~ φ|                       (1) 

 

for 1,,2,1  kr   and rf  depends on the parameters Φφ r . The parameters change at 

.1,,11  kcc   Each kcc ,,1  is called the change-point. Consider that rf  is a density parameterized 

by 
rφ . Let )(k

x  denote a configuration of x  with k  change-points. Let ),,,( 11
)()(

 k
kk

φφx   

and kA  be the space of models with k  change-points, 
k

k A)(
x  and  χ= k

n
k A0 . The likelihood 

function of Z is )|()|()|( 111111
)( 11

0 
 kjk

c

cjj
c

cj
k zfzfL k

k
φφZ  . We set the prior distribution 

for )(k
x in )(k  as the truncated Poisson distribution, 
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Kim and Cheon (2009) and Cheon and Kim (2009) provide the derivation of the full posterior for 

the normal, exponential, binomial and Poisson distributions for multiple change-points 
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identification in Table 2.1. We can sample from this non-normalized posterior )|( )(
Zx

kP  by the 

SAMC technique with the partitioned sample space according to the negative posterior log-

likelihood function and estimate the change-points which have the greatest posterior 

probabilities.  

The BIC is commonly used in Bayesian model selection, discussed in Kass and Raftery 

(1995). The model with the highest posterior probability is the one that minimizes:  
 

BIC = -2(log maximized likelihood) + )(logn (number of parameters).  
 

We used BIC since BIC penalizes more severely for the parameters and the posterior comparison 

is considered in change-point estimation. BIC tends to favor simpler models and gives a rough 

approximation to the logarithm of the Bayes factor, which is easy to use and does not require 

evaluation of the prior distributions (Raftery, 1995).  

 

3. APPLICATION OF SAMC TO MULTİPLE CHANGE-POİNT ESTIMATION 
 

The basic idea of SAMC (Liang et al., 2007) can be explained briefly as follows. Let 
 

                      xxx ),()( cf                                         (2) 
 

denote the target probability density/mass function, where  is the sample space and c is an 

unknown constant. Let 
mEEE ,,, 21

denote a partition of  , and let dxw
iE

i  )x(  for i = 

1,…,m. SAMC seeks to sample from the trial distribution 
 

                    )(
)(

)(
1

i

m

i i

i
w EI

w

g
f 



x
x

x
                        (3) 

 

where ig 's are pre-specified constants such that 0ig  for all i  and  


m

i
ig

1
1  and ),,,( 21 mggg g

 

is called the desired sampling distribution of the subregions. Let ti  denote the working estimate 

of )g/wlog( ii
 obtained at iteration t, let ),,,( 21 tmttt  δ , and let  t  denote a positive, non-

increasing sequence satisfying the conditions 
 

              (i) 


1t t ,  (ii) 


1t t

                                        (4) 

 

for some ).2,1(  Since )(xwf  is invariant with respect to a scale change of ),,,,( 21 mwww w

the domain of 
tδ  can be kept in the compact set   in simulations by adjusting 

t  with a constant 

vector. In this paper, we set ,]10,10[ 100100 m although this is practically equivalent to setting 
m . 

One iteration of the SAMC algorithm consists of the following steps: 
 

(a) (Sampling) Simulate a sample tx  by a single MH update with the target distribution 

 

)E(I
e
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)(f i

m

1i
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x
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Table 2.1 Log posterior distributions for the exponential family distributions 
Dist. Prior       Log Posterior 

Normal 

),( 2
iiN   

i , 2
i :  

unknown 

i ~ uniform 

~2
i ),( IG  

inv-gamma  
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(b) (Weight updating) Set )~( t1tt

*
ge  

, where )~,,~(e~ ,, mttt ee 1  and 1ite ,
~  if 

it Ex
and 0 otherwise. If * , set 

*

1t   ; otherwise, set 
**

1t c  where 

),,( *** ccc  can be an arbitrary vector which satisfies the condition  **
c . 

 

In the change-point detection, the sample space should be partitioned according to the model 

index: e.g., .},2:{},1:{ 21  kEkE xx In this paper, without loss of generality, we 

consider only models with ,maxmin kkk   where k is the number of change-points, and 
mink and 

maxk can be determined after a pilot study of the above algorithm, respectively. Outside this 

range, .0)|( ZiP 
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We apply the SAMC algorithm to the Bayesian model selection problem. For change-point 

detection, the maximum a posteriori (MAP) estimate of )(k
x is often a reasonable solution to the 

problem. The sampling step of SAMC is as follows. Let 
),( lt

kx denote the thl sample generated at 

an iteration t , where k indicates the number of change-points in the sample. The next sample 

can be generated from the following procedure. 

(a) Set 1or,,1  kkkj according to probabilities ,, jkq where 3/1, kkq for ,maxmin kkk 

,3/21,1, maxmaxminmin
  kkkk qq  and 3/11,1,   kkkk qq if

maxmin kkk  .  

(b) Update 
),( lt

kx by a “death”, “simultaneous” or “birth” move if ,1or,1  kkkj  

respectively. 

 

The “death”, “simultaneous”, and “birth” moves are designed as described in Green (1995) and 

Liang (2007 (b)).  
 

4. BAYESIAN CHANGE-POINT ANALYSIS WITH WELL-LOG DATA FOR NORMAL 

CHANGE-POINT MODEL 

 

We consider the problem of detecting change-points in well-log data, which come from O 

Ruanaidh and Fitzgerald (1996). The data, obtained by lowering a probe into a bore-hole, consist 

of 4050 measurements of the nuclear-magnetic response of underground rocks. Measurements 

were taken at discrete time-points by the probe as it was lowered through the hole. The data are 

used to interpret the geophysical structure of the rock surrounding the well. The variations in 

mean reflect the stratification of the earth's crust. The change-points in the signal occur each time 

a new rock type is encountered. Detecting the change points is important in oil-drilling; see the 

introduction of Fearnhead and Clifford (2003) for more details. These data have been previously 

analyzed by O Ruanaidh and Fitzgerald (1996), who used MCMC to fit a change-point model 

with a fixed number of change points; and by Fearnhead and Clifford (2003) who considered 

online analysis of the data using particle filters. Since well-log data were assumed to be followed 

a univariate Gaussian model in Adams and MacKay (2007), the normal change model was used 

for this well-log data and Bayesian analysis was performed.  

We assume that there are no more than 4049 change-points in the observation sequence. We 

partitioned the sample space according to the model index with kmin=10 and kmax=20. We set 

t0=50000, λ=15, r=2.0 and δ=0.00001, for a conjugate prior on σi
-2

. For a proposal distribution, 

the uniform distribution was used. The SAMC algorithm was run for 10
7
 iterations. A C-code 

used in all examples of this paper for implementing the SAMC algorithm is available upon 

request from the authors. Table 4.1 lists the five models with the largest log-posterior values 

identified by SAMC, and shows the maximum posterior change-point estimates (26, 1034, 1070, 

1210, 1220, 1420, 1433, 1525, 1684, 1866, 2046, 2408, 2469, 2532, 2591, 2771, 2780, 3942, 

3963). Figure 4.1 shows the performance of the maximum a posteriori (MAP) estimates of the 

change-points, indicating that nineteen change-points separate into homogenous groups well by 

corresponding with the abrupt changes in the mean of the data, as would be expected.  
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Table 4.1: The 5 models with the largest log-posterior values with well-log data. 

#of change-pts Log-posterior BIC Position  

19 

 

-5659.11 

 

11484.35 

 

(26,1034,1070,1210,1220,1420,1433,1525,1684,1866, 

2046,2408,2469,2532,2591,2771,2780,3942,3963)  

 

20 

 

 

-5663.97 

 

11502.38 

 

 

(26,1034,1070,1210,1220,1420,1433,1525,1684,1866, 

2046,2408,2469,2532,2591,2771,2780,3739,3942,3963) 

 

 

 

19 

 

 

 

-5664.20 

 

 

11494.53 

 

(26,1041,1070,1210,1220,1420,1433,1525,1684,1866, 

 

2046,2408,2469,2532,2591,2771,2780,3942,3963) 

 

20 

 

-5669.06 11512.55 

 

(26,1041,1070,1210,1220,1420,1433,1525,1684,1866, 

2046,2408,2469,2532,2591,2771,2780,3739,3942,3963)  

 

19 

 

 

-5670.28 

 

 

11506.70 

 

 

(26,1040,1070,1210,1220,1415,1433,1525,1684,1866, 

2046,2408,2469,2532,2591,2771,2780,3942,3963)  

 

 

 
Fıgure 4.1: Well-log data: (a) The histogram for log posterior probabilities of change-point 

positions; (b) A maximum posteriori estimate of the change-point positions. 

 

5. COMMENTS AND CONCLUSION 

 

We have discussed Bayesian multiple change-point models for the exponential family 

distributions developed by Kim and Cheon (2009) and Cheon and Kim (2009) in this paper. We 

applied the SAMC algorithm, as a computational tool for posterior calculation, to the change-

point identification since change-point estimation problem involves variable subspace 

dimensions. Although it would seem to be computationally intensive due to the unknown number 

of change-points, numerical results shows that SAMC can overcome this problem successfully. 

We illustrate the application of the posterior distributions to several data sets such as the well-log 

data. We find the results work as well as those given in earlier literatures on change-point 

estimation. Hence our method is simple to understand and is easily applied on change-point 

estimation for the sequence of independent random variable or random vectors from exponential 

distributions. 
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ABSTRACT 

 

This paper presents the appropriate weight for forecasting of AR(1) process based on fuzzy time 

series. Left and right (LAR) method has been proposed to obtain the appropriate weight of fuzzy 

logical relationship (FLRs) for forecasting of AR(1) process. Determining of weights was 

assigned using a collection of variations of chronological numbers in a fuzzy logical group 

(FLG). In addition, the weight and midpoint interval were done into the forecasting method, 

namely non-reversal and reversal methods. Both methods were validated through simulation 

using data which were generated from the certain time series models. By using data are 

generated from AR(1 and simulation technique both methods have been compared respectively. 

The experimental results show that the average of mean square error (MSE) from non-reversal 

method is smaller than reversal method. However, both of methods can be applied for 

forecasting of AR(1) process. In the end of this paper, the proposed method can be trained and 

tested by using real data. 

 

Keywords: Fuzzy time series; stationary; weight; left and right method; non-reversal method, 

reversal method. 

 

1. INTRODUCTION 

 

Fuzzy time series has been widely explored for forecasting of diverse fields.  Its application 

varies from forecasting of university student enrollment [Song and Chissom (1993a), Song and 

Chissom (1994), Chen (1996), Chen and Hsu (2004), Sah and Konstantin (2005), Kuo et al. 

(2009), and Chu et al. (2009)]  to forecasting stock index [Huarng et al. (2007), Yu (2005), 

Cheng et al. (2006), Lee et al. (2009), Jilani and Burney (2008), Yu and Huarng (2008), and 

Chen (2000)], temperature [Lee et al. (2006)] and financial forecasting [Singh (2007a)]. The 

most interesting in fuzzy time series forecasting is the assumption regarding data that are not 

needed and this vie is totally different from the statistical methods. In principle, this fuzzy time 

series model because it has been established by using fuzzification, fuzzy logical relationship 

(FLRs), fuzzy logical group (FLG) and defuzzification.   

In the year 1993  Song and Chissom (1993a) initiated a method to forecast the enrollments of 

the University of Alabama based on fuzzy time series.  They converted the historical time series 

data into some linguistic values; the formation of linguistic variables was made after allocating 

the universe of discourse U (where U is a finite set) and partitioning into several equal length 

intervals. These linguistic variables were then converted into fuzzy data.  From these fuzzy data, 

the fuzzy logical relationships of enrollments were made and fuzzy logical relationship groups 
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were established. Song and  Chissom (1993a) and Song and Chissom (1994) proposed a 

universal forecasting method using fuzzy sets, which was termed as fuzzy time series.  They 

presented the method to forecast the enrollments of the University of Alabama when the 

historical data were linguistic values, using fuzzy time series method. It discussed the concepts 

of time invariant fuzzy time series.  They also extended the scope of their previous work, Song 

and  Chissom (1993a), wherein they reported the application of the first-order time variant 

model. The difference between time-invariant and time-variant model and time invariant model 

was discussed.  They discussed the first order time-invariant fuzzy time series model and a first 

order time-variant model. These models were compared with each other and with a time 

invariant Markov model using linguistic labels with probability distribution. These models were 

compared with each other and with a time invariant Markov model using linguistic labels with 

probability distribution; Sullivan and Woodall (1994). Further the results of these methods were 

compared with a first order autoregressive AR(1) model and second-order autoregressive AR(2) 

models.  

Yu (2005) suggested the used of weighted fuzzy time series models for Taiwan stock index 

(TAIEX) forecasting.  It is assigned by the recurrent fuzzy logical relationships (FLRs) in fuzzy 

logical group (FLG).  In establishing fuzzy relationship and forecasting are important step to 

consider the weighted. Cheng et al. (2006) proposed the trend-weighted fuzzy time series model 

for TAIEX forecasting. The study for fuzzy time series is actively researched.  Some of the most 

recent work includes the study by Lee and  Park (1997) who proposed an efficient algorithm to 

compute the fuzzy weighted average for the purpose of aggregating imprecise sensory 

information represented by fuzzy numbers, which turned out to be superior to the previous work 

by reducing number of comparisons and arithmetic operations. The theoretical background for 

the fuzzy weighted average algorithm was constructed and verified. Kato and Sakawa (1998) 

proposed the formulation of large-scale multi-objective block - angular linear programming 

problems involving fuzzy numbers. Sugeno and Tanaka (1984) proposed successive 

identification method of a fuzzy model. The structure and initial parameters of a fuzzy model 

were determined to successively identify a fuzzy model. The model was called the „initial 

model‟. The initial model was identified by the off-line fuzzy modeling method using some pairs 

of input - output data. Bintley (1987) constructed an Expert System with the REVEAL modeling 

system. The expert system was applied to the problem of time series analysis. The concept of 

„fuzzy modeling‟ was used to avoid over-fitting the model to the noise. A time series could be 

considered as a series of data observed or measured at regular intervals. Time series might be 

standing alone („univariate‟) measurements of a single parameter or might be considered together 

in an attempt to establish the relationships between different phenomena („multivariate analyses).  

Even though extensive studies were conducted, some of the studies do not focused on 

establishing of the appropriate rules for each component time series data such as stationary data, 

seasonal variation, trend series, and combination between seasonal and trend series data in fuzzy 

time series forecasting. 

In our study, the focus will be to determine the appropriate weight and establish the 

forecasting method for AR(1) process. In addition, to obtain of weight for fuzzy logical 

relationship can be done based on left and right (LAR) method. Weights are determined using a 

collection of variation of chronological number in the fuzzy logical group (FLG).  For 

forecasting method, there are two methods that can be proposed. Both methods are done by using 

weight and the midpoint interval, namely a non-reversal and reversal methods.   Furthermore, 

both methods will be tested and trained by using data that are generated from AR(1) model using 
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simulation technique.  The fitness function of mean square error (MSE) will be used on 

measuring the forecasting performance for both methods. 

In this paper, an effort has been made to find the appropriate weight for forecasting of the 

stationary data based on fuzzy time series especially AR(1) process.  The discussion begins with 

some definitions of the basic theory of fuzzy time series, and stationarity of time series data 

followed by the discussion on the appropriate weighted for stationary data on fuzzy time series.  

Few examples are used in the discussion on the proposed procedure on forecasting and 

simulation method.  The verification, comparison and the model testing for real data are 

discussed and this paper ends with the conclusion of the study. 

 

2. METHODOLOGY 

 

A fuzzy set can be recognized by a membership function defined as in Huarng
 
(2001): 

 

Definition 1:  

Let U be the universe of discourse. A fuzzy subset A on the universe of discourse U can be 

defined as follows:  

 

   UuuuA iiAi  )(,           (1) 

 

where µA is the membership function of  A, µA  : U →[0, 1], and µA (ui)  is the degree of 

membership of the element  ui in the fuzzy set A. 

 

Definition 2: 

Let U be the universe of discourse, },,,{ 21 nuuuU  , and U be a finite set. A fuzzy set A can be 

expressed as follows: 
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where the symbol “+” means the operation of union instead of the operation of summation, and 

the symbol “─” means the separator rather than the commonly used algebraic symbol of 

division.   

 

Definition 3: 

Let U be the universe of discourse, where U is an infinite set. A fuzzy set A of U can be 

expressed as follows: 

 

 U
u

u
A

iu
U

i

iA   ,
)(

          (3) 

 

In addition, there are several definitions have been defined for fuzzy time series, see, for 

example, Song and Chissom (1993), Chen (1996), and Singh (2007).   

Definition 4:  

Let Y (t) be the universe of discourse defined by the fuzzy set µi(t). If F (t) consists of µi(t) (i = 1, 

2, …), F(t) is defined as a fuzzy time series on Y(t) (t = …, 0, 1, 2, …), where Y(t) is a subset of 
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real number. Following Definition 3, fuzzy relationships between two consecutive observations 

can be defined. 

 

Definition 5:  

Suppose F (t) is caused by F (t-1) denoted by F (t-1)→ F (t), then this relationship can be 

represented by  

 

 )1,()1()(  ttRtFtF            (4) 

 

where R (t, t-1) is a fuzzy relationship between F (t) and F (t-1) and is called the first-order 

model of F (t). 

 

Definition 6: 

Let F (t – 1) = Ai and F (t) = Aj. The relationship between two consecutive data (called a fuzzy 

logical relationship, FLR), i.e., F (t) and F (t-1), can be denoted by Ai → Aj,  i, j = 1, 2, …, p 

(where p is interval or subinterval number) is called the left-hand side (LHS), and Aj is the right-

hand side (RHS) of the FLR. The proposed a fuzzy time series model with procedure as follows: 

 to define the universe of discourse and intervals 

 to fuzzify 

 to establish fuzzy relationships 

 to forecast 

 

Definition 7:  

Let pikiji AAAAAA  ...,,,   are FLRs with the same LHS can be grouped into an ordered 

FLG (called a fuzzy logical group) by putting all their RHS together as on the RHS of the FLG. 

It can be written as follows: 
 

 pAAAA kji ,...,,    i, j, k,…,p = 1, 2, …, p          (5) 

 

Stationarity is the first features in time series that are related to the mean value and variance of 

observation data.  The series is said to be stationary if the mean and variance is constant over 

time, and the covariance between observations yt and yt-d only dependent on the distance between 

the two observations that does not change over time.  The usual practice in detecting stationarity 

of the data is by using time plot.  Suppose there are n observations with values y1, y2,…, yn of a 

time series, then these values when plotted against time will determine whether the time series is 

stationary.  If the n values seem to fluctuate with constant variation around a constant mean µ, 

then is it reasonable to believe that the time series is stationary. In contrary, if the n values do not 

fluctuate around a constant mean or do not fluctuate with constant variation, then it is non-

stationary; Bowerman and O‟Connel  (1987). The stationary condition may also be investigated 

by using autocorrelation function (ACF) and partial-autocorrelation function (PACF).  

In time series modeling, the stationarity can be found in Autoregressive (AR) process, 

Moving Average (MA) process, and mix process between (AR) and (MA) known as the 

Autoregressive Moving Average (ARMA). Consider the following for first-order autoregressive 

(AR(1)) process; Palit and Popovic (2005). 
 

 ttt ayy  11            (6) 
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with the stationarity condition requires that the variance are constant over time Var (yt) = Var (yt+1). 
 

or the equality }]{[}]{[ 2
111

2
11   tttt ayEayE 

 
holds. Therefore, because of mutual indepen-

dence of at and yt-1, the equality )()()( 1

2

1 ttt aVaryVaryVar   follows, and finally the equality 
2

0

2

10   , where 0 does not depend on time t. 

 

In this study, a generated AR(1) will be used in the simulation exercise. This is a powerful tool 

for analysis of many mathematical models and real-world systems when analytical solutions are 

not possible. Generally, there are some statistical aspects of simulation such as formulation of the 

problem, input data analysis, the model and computer program, validation, experimental design, 

and sample size; Kleijnen (1974). Using the statistical techniques, a sound simulation model can 

be built and adequately tested before implementation.  

 

3. THE APPROPRIATE WEIGHT FOR STATIONARY TIME SERIES DATA 

 

In the previous studies, Yu (2005) has discussed the weighted fuzzy time series models for 

Taiwan stock index (TAIEX) forecasting. Cheng et.al. (2006) suggested the trend-weighted 

fuzzy time series model for TAIEX forecasting. The weight used in their work was determined 

using recurrence on fuzzy logical relationship (FLR). Weighted was used to improve forecast 

accuracy but no work has explored the appropriate weighted for each component of the time 

series data. In this section, the discussion of weighted for stationary time series data will be 

detailed.  

Fuzzy time series forecasting has been widely explored in the last decades but those studies 

did not explain the best rule and procedure of forecasting for the major characteristic features of 

time series data such as stationarity, linearity, trend, and seasonality. The existing procedure has 

been established based on the real data only and are not used for predicting each component in 

the time series data.  In this study, the discussion will be on determining the appropriate weight 

for forecasting with stationary time series data. In addition, the term weight means are commonly 

used in statistics. In fuzzy time series, the numerical data will be transformed into the linguistic 

values.  Further, the relationship will be mapped between each past linguistic value and each 

present linguistic value.  This relationship is known as fuzzy logical relationship (FLG); Song 

and Chissom (1993a) and Yu (2005). If the actual data is stationary, then many relationships may 

be established among the same linguistic values or the recurrence can be found more than twice. 

Consecutively, the appropriate weight must be assigned to this type of data.  

Our reviews on previous studies in related areas show that the descriptions of the recurrent 

fuzzy relationships are not clearly given.  The repeated FLRs were simply ignored when fuzzy 

relationships were established.  The following examples as given in Yu (2005) can be used to 

explain the repeated FLRs. Let there be the FLRs given in chronological order as in Table 1. 

Based on Table 1, there are four out of five FLR having the same LHS, A1. The occurrences 

of the same FLR in column 2 are regarded as if there were only one occurrence.  In other words, 

the recent identical FLR are not considered in the work by  Song and Chissom (1993a).  It is 

questionable if these recurrences are ignored. The occurrence of a particular FLR represents the 

number of its appearances in the past. For instance, in column 2, A1→A1 appears three times and 

A2→A1 appears only once. The recurrence can be used to indicate how the FLR may appear in 

the future. Hence, to cover all of the FLR, an approach to represent the fuzzy relationship is 

suggested below: A1→A1, A2, A1, A1, A1.  
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The various recurrences of FLR have been considered for determining weight on fuzzy time 

series by Yu (2005) and Cheng et al. (2006). 

Table 1.  Recurrence of fuzzy logical relationship (FLRs) 

 

Linguistics 

Value  
FLRs 

FLG ( Fuzzy Logical 

Group) 

A1 - 

A1→A1, A2, A1, A1, A1 

A2→A1 

A1 A1→A1 

A2 A1→A2 

A1 A2→A1 

A1 A1→A1 

A1 A1→A1 

 

 

In this paper, we do not consider the recurrence for computational weight.  The recurrences 

occur due to the relationship between the same linguistic occur repeatedly on stationary time 

series data.  From the simulation study, the number of the same FLR occurring more then 3 or 4 

times for each group in FLG.  The occurrence can be shown in Table 2.   

Table 2 shows the various recurrences in FLG. For example, A3 has 3 relationships with A3, 

A4 has 4 relationships A4, A6 has 8 relationships, A7 has 7 relationships with A7. On the other 

hand, the relationship between Ai → Aj also can be found frequently.  While, for A1, A2 and A9 

can not be found their relationship with others. This condition is the main reason to ignore the 

recurrence for establishing the appropriate weight on stationary time series data. In 2009, Lee et 

al. (2009) developed the modified weight based on collection of variation of the chronological 

number in fuzzy logical group (FLG). In addition, to tackle this phenomenon, the new rule are 

presented based on left and right (LAR) relationship as follows 

1. Imperfect LAR 

The weight can be determined if there jji AAA ,1  or 1,  jji AAA which      i = j, i, j ≥ 1 

and i, j ϵ Z. In this condition, we can see that Ai has two relationships namely; the first 

value (Aj-1) that appears to left of the original value (Ai), the second value has the same 

value as original in a FLG. Therefore, this relationship is call as an imperfect left and 

right (LAR) relationship.  

2. Perfect LAR 

The weight can be assigned if there are relationships in a FLG as follows 

11 ,,  jjji AAAA  (i = j, i, j ≥ 2 and i, j ϵ Z) 

jjji AAAA ,, 11   

11,,  jjji AAAA  

11,,  jjji AAAA  

jjji AAAA ,, 11   

11 ,,  jjji AAAA  

Six conditions above are called as perfect LAR because we can find the left and right 

relationship of original value for each FLG. 
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Example  

From Table 2, we have A1→A2, no weight can be considered because the relationship occurred 

only one time. We also have A9 → A8, A5, A8, A6, but also no weight can be obtained because it is 

not compatible with rule 1 and 2. 

  

Example for rule 2 

From Table 2, we have A3 → A5, A3, A6, A6, A3, A2, A3, A5, A2, A4. This FLG complies with the 

rule 2. In this case, the first value that appears to left of the original value (A4), then the first 

value that appears to right of the original value (A2) and has the same value as original (A3). 

Thus, three conditions above are called as a perfect left and right relationship. In addition, this 

FLG can be written simply as 

 

 A3  → A3, A2, A4           (7) 

 

or other FLG 

 A8 → A9, A8, A7           (8) 

Table 2.  Recurrence on fuzzy logical group (FLG) 

Fuzzy Logical Group (FLG) 

A1  → A2 

A2 → A3, A4, A6, A6 

A3  → A5, A3, A6, A6, A3, A2, A3, A5, A2, A4 

A4 → A5, A3, A5, A2, A4, A3, A7, A4, A4, A6, A4, A6 

A5 → A3, A4, A6, A7, A6, A5, A4, A8, A8, A6, A6, A6, A3 

A6 → A7, A7, A3, A6, A7, A6, A7, A8, A6, A7, A7, A8, A6, A6, A5, A5, 

A8, A5, A5, A3, A8, A6, A6, A6, A9 

A7 → A4, A7, A9, A7, A7, A7, A6, A8, A4, A6, A7, A7, A7, A5, A8, A4, 

A5 

A8 → A9, A8, A6, A9, A7, A7, A4, A9, A6, A8, A5, A8, A6 

A9 → A8, A5, A8, A6 

 

 

The computational weights are assigned by using the rule given the Section 3.2. Suppose

11 ,,  jjji AAAA ,  i = j is a FLG and the weights are specified as follows: 

(j-1) = c1, j = c2, (j + 1) = c3. 

Then  
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Example 1  

From the FLG (7) and (8) then the weight can be determined by using equation (9) 

Given A3  → A3, A2, A4 and  c1 = 3, c2 = 2, c3 = 4 then 
 

w1 = 3/(3 + 2 + 4), w2 = 2/(3 + 2 + 4), w3 = 4/ (3 + 2 + 4) 
 

thus W(A3) = W(t) = [ w1   w2   w3 ] = [ 3/9   2/9   4/9 ] = [ 0.33  0.22  0.45 ] 
 

Given A8 → A9, A8, A7 and  c1 = 9, c2 = 8, c3 = 7 then 
 

w1 = 9/(9 + 8 + 7), w2 = 8/(9 + 8 + 7), w3 = 7/ (9 + 8 + 7) 
 

thus W(A8) = W(t) = [ w1   w2   w3 ] = [ 9/24   8/24   7/24 ] = [ 0.37  0.33  0.30]. Therefore, 

weights are satisfying condition in both of weight matrix.  

In this study two models are proposed for forecasting, namely non-reversal model and 

reversal model. Both models can be detailed as follows: Let 11 ,,  jjji AAAA  is a FLG and the 

corresponding weights for 11 ,,  jjj AAA are w1, w2, w3. The defuzzified of the midpoints of 

11 ,,  jjj AAA are mj-1, mj, mj+1.  It can be denoted in the product of the defuzzified matrix and the 

transpose of the weight matrix:  

 

In the forecasting model, two different methods may be used. The forecast model F(t) is given as  

 

 T

jjj wwwmmmtF ][][)()()( 32111  

T
tWtM         (10) 

 

where the number elements in matrix M(t) and W(t) are equal. In addition, the equation (10) can 

be denoted as a non-reversal method and it is used for in-sample forecast. Equation (10) can be 

modified as follows 

 

 T

jjj wwwmmmtF ][][)( 12311           (11) 

 

where M(t) is a 1 x n matrix and W(t)
T
 is a n x 1 matrix, respectively. Equation (11) is known as 

a reversal method and it is used for in-sample forecast. Both of the equations are validated by 

simulation.  For out-sample forecast, that equation can be denoted as 

 

 F(t) = M(t-1) x W(t-1)
T
         (12) 

Example 2 

By using a FLG from Example 1 then the forecast F(t) can be determined as follows 

 

F(t) = M(t) x W(t)
T
 = [ m3  m2  m4 ] x [ w3  w2  w4 ]

T
. 

 

4. THE ALGORITHM AND SIMULATION PROCEDURE 

 

The computational step wise for forecasting are described as follows: 

 

Step 1. Partition the universe of discourse U into several intervals of equal length. In general, U 

is defined as U = [ Dmin – D1, Dmax + D2], where Dmin and Dmax are the minimal and maximal 
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values of the historical data,  D1 and D2 are proper positive numbers. Then U is partitioned into n 

equal intervals, u1, u2, … , un, with length l defined as
28

 

 

 l = 1/n[(Dmin – D1) – ( Dmax + D2)].         (13) 

 

Step 2. Establish fuzzy sets for observations. Each linguistics observation Ai can be defined by 

the intervals: u1, u2, … , un . Each Ai can be represented as following equation (13) and the value, 

kj, is determined by the following situations
16 

 

 IF j = i-1, then kj = 0.5;  

 IF j = i, then kj = 1;  

 IF j = i + 1, then kj = 0.5; elsewhere kj = 0;
 
and Ai = Σ kj / uj .

 

 

Step 3. Establish the fuzzy relationships. Two consecutive fuzzy sets Ai(t-1) and Aj(t) can be 

denoted by a single FLR as Ai → Aj . 

 

Step 4. Establish the fuzzy logical groups for the corresponding trends. The FLRs with same 

LHSs (left hand sides) can be grouped to form a FLG. For example, Ai → Aj , Ai → Ak , Ai → Am 

can be grouped as Ai → Aj , Ak , Am . 

 

Step 5. Assign the weights. The weights can be calculated by using rule (1 & 2) given in Section 

3.2 and 3.3. 

 

Step 6. Calculate the forecast value by using equation (10), (11) for in-sample and equation (12) 

for out-sample. In this study, two rules are employed for forecasting as follows: 

 

Rule 1 :   If there are no weight for Ai , then the forecast is equal to midpoint of Ai . 

 

Rule 2 : If there are weight for Ai , then the forecast can be computed using the equation (10), 

(11) and (12) for out-sample.  

 

The procedure also can be illustrated in the form of flowchart as in Figure 1. 

The procedure for simulation model to determine the appropriate weight for AR(1) process is 

presented in the following 4 steps. 

 

Step 1. Choose one AR(1) model.  For demonstration purposes, we simulate using the following 

AR(1) model yt = 5 + 0.5yt-1 + at . where {at} is the white noise. 

 

Step 2. Generate at by using number random generation where at‟s are i.i.d N(0, 1). In this study, 

we generate 100 data and simulate 100 times for each experiment. 

 

Step 3. Use the procedure in Section 4.1 then yt is predicted by using both methods as described 

in Section 3.4.  

 

Step 4. Compute the mean square error (MSE) of in-out sample forecast for each method, and 

then compare with MSE of yt. In this simulation, MSE of yt is get equal to 1. 
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Fig. 1.  Forecasting procedure 

 

3.1 The Validation of Proposed Method 
 

Simulations results in the form in-sample and out-sample MSE for non-reversal and reversal 

method is given in Table 3. 

 

Table 3.  MSE of the proposed methods 

No of experiment 
MSE of Non-reversal Method MSE of Reversal method 

In-sample Out-sample In-sample Out-sample 

1 0.10 1.38 0.09 1.38 
2 0.06 1.31 0.06 1.39 
3 0.18 2.82 0.18 2.78 
4 0.12 1.31 0.09 1.28 
5 0.06 0.82 0.06 0.86 
6 0.10 1.90 0.10 1.87 
7 0.09 2.05 0.07 2.04 
8 0.08 1.86 0.07 2.20 
9 0.09 1.42 0.07 1.39 
10 0.04 1.76 0.04 1.79 
          

99 0.10 0.70 0.10 0.74 
100 0.10 1.25 0.08 1.39 
Sum 8.07 133.46 7.71 136.05 

Average 0.0807 1.3346 0.0771 1.3605 

Define the universe of discourse U and partition it into several 

intervals  

Establish fuzzy sets for observations and fuzzify historical data 

Establish fuzzy sets logic relationships (FLRs) 

Establish fuzzy relationship groups into (FLG) 

Assign weight and establish the forecasting rule 

Apply the weight to calculate forecast 
 

Data Analysis 

Validation, comparison and models testing 
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From Table 3, it shows that the MSE in-sample from reversal method is smaller than non-

reversal method. On the other hand, average of MSE out-sample from non-reversal method is 

smaller than reversal method. In addition, the difference in MSE for the proposed method is not 

significant.  Thus, they can be used for AR(1) process. In the other word, the weighted which 

have been assigned based on left and right (LAR) method can be called as an appropriate method 

for weight on the forecasting of AR(1) process. 

In this section, the performance of the proposed method then both methods are tested to real 

data and compared with AR(1) model. The data was taken from Box et.al (1994) as data training. 

There are 70 observations from yield chemical process every hour. By using the computational 

step wise as given in Section 4. The forecast results can be computed and presented in Table 4. 

Table 5 shows that MSE of non-reversal and reversal methods are smaller than AR(1) model. 

MSE of both methods are too significant difference with AR(1). It could be denoted that the 

difference of MSE is 5 times smaller than AR(1) model. Besides that, this improvement is also 

influenced by partition number. We propose 15 intervals for observations. This interval is 

determined by MSE minimum of out-sample forecast. In addition, Table 5 indicates that MSE 

out-sample forecast of reversal method is smaller than non-reversal method and also AR(1) but 

the difference is not too significant between non-reversal and AR(1). However, both of proposed 

methods are better than AR(1).  

The comparison of MSE for each method can be seen in Table 5. 

 

Table 4.   Performance of the proposed method and AR(1) model 

Time Actual(yt) 
Forecasted 

Non-Reversal Method Reversal Method  AR(1) 

1 47   51.38 

2 64 64.36 64.36 55.41 

3 23 25.72 25.72 47.30 

4 71 70.80 70.80 66.86 

5 38 38.60 38.60 43.96 

6 64 64.36 64.36 59.71 

7 55 55.03 54.37 47.30 

8 41 38.60 38.60 51.60 

9 59 55.03 54.37 58.27 

10 48 45.04 45.04 49.69 

11 71 70.80 70.80 54.94 

12 35 32.16 32.16 43.96 

13 57 55.03 54.37 61.14 

14 40 38.60 38.60 50.64 

15 58 55.03 54.37 58.75 

16 44 45.04 45.04 50.17 

17 80 77.26 77.26 56.84 

18 55 55.03 54.37 39.67 

19 37 38.60 38.60 51.60 

20 74 70.80 70.80 60.18 

    52.32 51.86 42.53 

49 43 45.04 45.04 47.30 

50 

Out-sample 

52.32 51.86 57.32 

51 52.32 51.86 50.46 

52 52.32 51.86 53.73 

          

70 Out-sample 52.32 51.86 52.67 
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Figure 2. The forecast results based on the proposed method and AR(1) model. 

Table 5.   Comparison of MSE 

Method 

 

MSE 

 

In-sample forecast           

(N = 49) 

Out-sample forecast                          

(N = 21) 

Non-reversal  4.498 136.291 

Reversal 5.227 132.309 

AR(1) 115.780 137.907 

 

 

5.  CONCLUSIONS 

 

In the paper, we proposed left and right (LAR) method to obtain an appropriate weight of fuzzy 

logical relationship for forecasting of AR(1) process. Its application is very useful to improve the 

forecasting accuracy. Moreover, the partition number is also affected factor to obtain a better 

forecast. The experimental results showed that MSE of proposed method are smaller as 

compared to AR(1). The performance of non-reversal and reversal methods are also better than 

AR(1) for forecasting of real data. Therefore,   In future study, the appropriate weighted should 

be extended to reach a higher forecasting accuracy if the stationary time series follow MA(1) and 

ARMA(1, 1) process.  
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ABSTRACT 

 

The purpose of this research is to study the impact of Lapindo mud flow disaster and new tariff 

of the oil fuel in Indonesia on transportation, particularly vehicle volume in toll-roads. The hot 

mud flow disaster from Lapindo Brantas, Inc. caused the Porong toll-road to be flooded and it 

had to be closed. The disaster very much impacted the traffic volume of the Surabaya-Gempol 

toll-road. This research focuses on developing a multi-input intervention model for explaining 

the impact of two interventions, namely the Lapindo mud flow disaster on May 29
th

 2006 and a 

new tariff for the oil fuel in October 2005. This model is used to analyze the decrease of the 

traffic volume in toll-road, specifically the magnitude and duration effects of both interventions. 

First, a theoretical study is carried out to derive the statistical inputs that could be used as a basic 

tool for determining the order of intervention model. These results are applied to construct a 

multi-input intervention model. This study shows that these two interventions significantly 

contributed to the decreasing of traffic volume of the toll-road. The decrease in traffic volume 

caused by the new tariff of the oil fuel is 388,512 vehicles since the month of the new tariff 

policy. The Lapindo mud flow resulted in a cumulative decrease in traffic volume of 387181, 

553456 and 679485 vehicles for the first three months, fourth to sixth months and seventh until 

nineteenth months (the end of the duration), respectively. Thus, the multi input intervention 

model shows that the Lapindo mud flow disaster has a long lasting effect on the decrease of 

vehicle volume on this toll-road.  

 

Keywords: Lapindo mud flow; new fuel tariff; traffic volume; multi input; intervention model. 

 

1. INTRODUCTION 

 

Malang and Pasuruan are cities with high tourism activities in East Java, Indonesia. Tourists who 

go to Malang and Pasuruan via Surabaya by cars and other big vehicles usually pass through 

Surabaya-Gempol toll road. On May 29, 2006 hot mud blasted from a volcano in Porong, 

southern of Sidoarjo, together with thick smoke. This mud came from the mining area of Banjar 

Panji I well, which is owned by Lapindo Brantas Inc. The mud flooded the Porong-Gempol toll 

road between the 38th and 39th km and blocked the traffic. This caused the toll road to be closed 

down on November 26, 2006 and people who travel between Malang and Surabaya had to find 

alternate routes. This event provides the main background for this research. 

To date, a mathematical model has not been made to evaluate the impact of Lapindo mud 

flood to the amount of vehicles passing Waru-Gempol toll road. The main objective of this 
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research is to find a mathematical model which is appropriate to explain the impact of Lapindo 

mud flood on the number of vehicles in Waru-Gempol toll road. This model is used to measure 

the loss due to Lapindo mud flood in the transportation sector, especially the decreasing number 

of vehicles in the Waru-Gempol toll road. In this research, the model that examined and 

developed is the multi step function intervention model. In general, intervention models are a 

special type of time series models which are usually used to evaluate the internal and/or external 

impact in time series data. 

Previous researches related to intervention models caused by internal factors could be seen in 

Box and Tiao (1975) who evaluate the impact of machine design laws to the oxidant polution 

rate in Los Angeles, McSweeny (1978) who investigates the impact of new tariff in Cincinnati 

Bell Telephone to the number of local help calls, Leonard (2001) who studies the impact of 

product promotion and the price rising, and Suhartono and Wahyuni (2002) who analyze the 

effect of promotion and price rising on consumer pulse consumption. Examples of external factor 

intervention can be seen in Montgomery and Weatherby (1980) who studied the impact of 

Arabian petroleum embargo to the electricity consumption in United States, Suhartono and 

Hariroh (2003) who investigate the impact of New York WTC bombing to the fluctuation of 

some world stock prices, and Suhartono (2007) who investigate Bali bombing effect to hotel 

occupancy rate in Bali. 

 

2. INTERVENTION MODEL 
 
An intervention model is a model which could be used to evaluate the impact of an intervention 

event that is caused by internal or external factors on a time series dataset (Suhartono, 2007). 

Generally, there are two common types of intervention, namely step and pulse functions. 

Detailed explanations and applications of intervention analysis can be found in Bowerman and 

O’Connell (1993), Hamilton (1994), Brockwell and Davis (1996), Tsay (2005), Wei (2006), and 

Suhartono (2007). An intervention model can be written as  
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where tY  is a response variable at time t and tX  is a binary indicator variable that shows the 

existence of an intervention at time t. tX  can be step function tS  or pulse function tP . Then, 

)(Bs  and )(Br  are defined as 
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Equation (1) shows that the magnitude and period of intervention effect is given by b, s, and r. 

The delay time is shown by b, while s gives information about the time which is needed for an 

effect of intervention to be stable, and r shows the pattern of an intervention effect. The impact 

of an intervention model on a time series dataset )( *

tY  is 
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A step function is an intervention type which occurs over the long term. For example, 

Valadkhani and Layton (2004) applied a step function intervention for analyzing the impact of 

new tax system in Australia since September 2000. The intervention step function is written as 

(Wei, 2006) 
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where the intervention starts at T. A step function single input intervention model with b=2, s=1, 

and r=1 can be obtained by substituting Equation (3) into (1),  
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Therefore, the effect of a step function single input intervention is 
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The effect of an intervention’s effect in Equation (6) can also be written as 
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A simulation of this intervention, with 250  , 101  , 5.01   occurring at 42t  is drawn by 

Figure 1. 

 

This intervention starts affecting tY  two periods after intervention occurred )2( b , with a 

magnitude of 25. Three periods after intervention, the value of tY  becomes 47.5 and reaches 64.4 

in the fourth period. This increase becomes permanent effect and can be seen to extend at least as 

far as  70t . 

An intervention which occurs only at a certain time (T) is called pulse intervention. Examples 

of this intervention are public elections and the 11 September attacked in USA which affected 

the unemployment rate in USA (Dholakia, 2003). The pulse intervention function is written as 
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 (a) (b) 

Figure 1.   (a) Simulation of an intervention model, (b) Intervention effect of 

Step Function Single Input )1,1,2(  rsb  

 

 

An explanation of a single input intervention effect with pulse function can be done similarly to 

the step function intervention in Equation (4)-(7). A simulation of a pulse single input 

intervention model )1,1,2(  rsb  which the value of 250  , 101  , and 5.01   is drawn in 

Figure 2. Figures 1 and 2 show the difference between step and pulse interventions and their 

effects. The effect of a step function is felt until Tt  , where 50T , while the pulse function has 

an impermanent effect, whereby for a certain T, the time series dataset will not affected by the 

intervention event.  

A multi input intervention model, based on Equation (1), is (Wei, 2006) 
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which can be written  
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Equation (9) shows that there are k events affecting a time series dataset. For illustration, 

consider a multi input intervention with two events, pulse function (b=1, s=2, r=0) which is 

followed by step function )1,1,1(  rsb , i.e. 
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The impact is 
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which can also be written as 
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 (a) (b) 

Figure 2.   (a) Simulation of an intervention model, (b) Intervention effect of 

pulse Function Single Input )1,1,2(  rsb  

 

An illustration of Equation (10) and its impact are represented by Figure 3, for  

,4,15,5,10,25
22111 10210    and .5.01   The first intervention occurs at ,30t  with 

a magnitude of 25. The pulse function intervention has an effect that lasts for 4 periods beyond 

301 Tt  with the magnitude effects being 10 and 5 on the third and fourth after the 

intervention, respectively. The effect of this pulse intervention will be equal to zero. A second 

intervention begins at 542 Tt . This step intervention is felt at 55t  and its impact is 15. From 

56t  to 59t  the impacts of this step intervention are 26.5, 32.25, 36.5, and 37.3, respectively. 

The impact doesn’t increase beyond 38.  

 

 
(a)         (b) 

Figure 3. (a) Simulation of an intervention model, (b) Intervention effect of Multi input 

intervention where Pulse Function )0,2,1(  rsb  occurs at 30t  and was followed by 

Step Function )1,1,1(  rsb  at 54t  

t

Y
t 

(P
u

ls
e

)

726456484032241681

120

115

110

105

100

95

90

T=42

Time Series Plot of Yt (Pulse)

t

X
t 

(P
u

ls
e

)

7268646056524844403329

25

20

15

10

5

0

T=42

Time Series Plot of Xt (Pulse)

t

Y
t

726456484032241681

140

130

120

110

100

90

T1=30 T2=54

Time Series Plot of Yt

t

X
t

7975615753494541373329

40

30

20

10

0

T1=30 T2=54

Time Series Plot of XtTime Series Plot of Yt* Time Series Plot of Yt 

Time Series Plot of Yt* Time Series Plot of Yt 



850 

 

Now, we will show the other multi input intervention model, where the step function intervention 

)0,2,1(  rsb  is the first intervention and followed by a pulse function intervention 

)1,1,1(  rsb . The model is  
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The first intervention, namely the step function intervention, starts affecting the data at one 

period after the intervention event occurs, and its impact is 
10 . This impact will be (

11 10   ) in 

the second period. From the third period until 2Tt  , the impact is (
111 210   ). One period 

after 2Tt  , the second intervention, namely the pulse function intervention, gives additional 

impact to the time series dataset, 
20 . Therefore, the net impact will be )(

2111 0210   . The 

second and third periods after 2Tt  , the impacts are )(
22111 110210    and 

)( 11

2

10210 22111
  . Thereafter, the impact decreases gradually goes to zero. 

Consequently, the impact will be back to ( )
111 210   .  

Figure 4 shows a simulation of a multi input intervention where the first intervention is the 

step function and the second intervention is the pulse function. The initial value for this 

simulation are ,4,15,5,10,25
22111 10210    and .5.01   The first intervention, which 

occurs at 301 Tt , starts to affect the data on 31t , and the impact is 25. There is a rapid 

increase in the intervention effect (see Figure 4(b)) from 32t  to 35t , but the effect remain 

constant between 35t  and 54t . The second interventions occurs at 542 Tt  and starts to 

affect the data at 55t . This effect becomes 0 from 59t  onwards.  

 

 

   
 (a) (b) 

Figure 4. (a) Simulation of an intervention model, (b) Intervention effect of Multi input 

intervention where Step Function )0,2,1(  rsb  occurs at 30t  and was followed by Pulse 

Function )1,1,1(  rsb  at 54t  

 

Let the intervention model be defined as  
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Equation (12) can be rewritten as 
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Thus, we have 
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The nonlinear least square estimation to estimate the unknown parameters can be found by 

minimizing  
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(15) 

where )1,1max(0  spbrpt  and ta  are the residuals under the white noise assumption and 

Normal distribution. The parameters of the multi input intervention can be obtained by replacing 

Equation (12) with Equation (9) and following the same minimization procedure as Equation 

(13)-(15). As in Suhartono (2007), the intervention response or *
tY  is easily formulate using the 

response values charts for determining the order of intervention model, i.e. b, s, and r. The 

intervention response which is denoted as *
tY

 
is basically residual or error, i.e. the difference 

between actual data and ARIMA model forecasts from data before the intervention. The 

complete procedure of intervention model building which can be used to evaluate two step 

function interventions at time T1 and T2 (in this case, new fuel tariff and Lapindo mud flood) 

based on theoretic studies can be described as follows. 

(1) Dividing the dataset into 3 parts,  

 Data 1, which is the data before the first intervention, as many as n0 time periods, i.e. 

11,2, , 1.t T  Denoted as
t

Y0 . 

 Data 2, which is the data from the first intervention until just before the second 

intervention, as many as n1 time periods, i.e. 1 1 1 2, 1, 2, , 1.t T T T T     Denoted as
t

Y1 . 

 Data 3, which is data from the second
 
intervention until the end of data, as many as n2 

time periods, i.e. 2 2 2, 1, 2, , .t T T T n   Denoted as
t

Y2 . 

(2) Modeling of the first intervention  
a. Step 1 

 ARIMA model building for time series data before the first intervention occurs (
t

Y0 ), 

so we have 

td

p

q
a

BB

B
Y

t )1)((

)(
0






. 

 Forecasting of Data 2 (
t

Y1 ) using the ARIMA model. In this step, we get the forecast 

data, i.e. 
.ˆ...,,ˆ,ˆ

11 1111  nTTT YYY
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b. Step 2 

 Calculate the response values of the first intervention or *

1t
Y . These are the residuals of 

the data for 1...,,2,1, 2111  TTTTt , based on the forecasting of the ARIMA model in 

the first step. This step produces response values of the first intervention, i.e. 

....,,, *

1

*

1

*

211  TTT YYY  

 Determination of 111 ,, rsb  from the first intervention by using the plot of response 

values *

1

*

1

*

211
...,,,  TTT YYY  and a confidence interval of width, i.e. ,ˆ3

0a  where 
0

ˆ
a

 
is Root 

Mean Square Error (MSE) of the previous ARIMA model. This interval is based on 

the determination of control chart bounds during statistical quality control for 

detecting outlier observations.  

c. Step 3 

 Parameter estimation and significance test for the first intervention model 

 Diagnostic checking for examining the residual assumption, i.e. white noise and 

Normality distribution. In this step, we have the first input intervention model, i.e. 
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(16) 

(3) Modeling of the second intervention  

a. Step 1 

 Forecasting of Data 3 )( 2t
Y , based on the first intervention model. In this step, we 

obtain the forecasted values from the ARIMA model  

.ˆ...,,ˆ,ˆ
11 2222  nTTT YYY  

b. Step 2 

 Calculate the second intervention responses )( *

2t
Y , i.e. residual of the data for 

2 2 2, 1, 2, ,t T T T n   , based on the forecasting of the first intervention model. These 

response values are denoted  

2 2

* * *
1, , ,T T nY Y Y  

 Identification of 222 ,, rsb  from the second intervention model from the plot of response 

values  
2 2

* * *
1, , ,T T nY Y Y , and the confidence interval of width .ˆ3

1a  

c. Step 3 

 Parameter estimation and significance test for the second intervention model 

 Diagnostic checking for examining the residual assumption, i.e. white noise and 

Normality distribution. In this step, we have  
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This procedure could be used iteratively for k interventions to build k multi input intervention 
models, i.e.  
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3. THE DATA 
 

As a sample case study, these techniques are illustrated via the analysis of the amount of monthly 
traffic on the Waru-Gempol toll road from January 2000 until December 2007. Hence, there is 
96 observations. The time series plot of the data and photo of the intervention event are shown in 
Figure 5. 
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 (a) (b) 

Figure 5. (a) Photo of Lapindo mud flood, (b) Time series plot of the amount of  monthly 

vehicles on the Waru-Gempoll toll road, January 2000 –  December 2007. 
 
 

During this time period, there are two interventions which affect the amount of vehicles on the 
toll road. These interventions are the new fuel tariff applied since October 2005 (t ≥ 70) and the 
Lapindo mud flood which occurred in May 2006 (t ≥ 77). Both intervention variables are step 
function intervention variables. 

 

4. RESULTS 

 

The Box-Jenkins procedure (see Box et al., 1994) is utilized, including identification, parameter 

estimation, diagnostic checking, and forecasting to find the best ARIMA model before the first 

intervention, i.e. new fuel tariff since October 2005. The identification step shows that the data is 

stationary in variance, but not stationary in mean (that is, the data contain trend and seasonal 

pattern). Regular and seasonal order differencing is applied to get stationary data. Plot of ACF 

and PACF for the stationary data is shown in Figure 6. 

Both ACF and PACF plots cut off after lag 1, so there are 2 possible ARIMA models, i.e. 

ARIMA(0,1,1)(0,1,0)
12

 and ARIMA(1,1,0)(0,1,0)
12

. The results of parameter estimation, 

parameter significance test, and diagnostic checking can be seen in Table 1. From Table 1, we 

know that both models are appropriate for forecasting the amount of vehicles before raising of 

the fuel tariff  intervention. The comparison of mean square error (MSE) shows that 

ARIMA(0,1,1)(0,1,0)
12

 model yields less MSE than ARIMA (1,1,0)(0,1,0)
12

.  

The results of the first step intervention modeling are calculated, namely the new fuel tariff since 

October 2005 which occurred at 70Tt . The first step of modeling is to determine the order b, 

s, and r for the first step function intervention model. To determine the decrease due to new fuel 

tariff and to determine the first step function intervention model order, a residual chart is shown 

in Figure 7. 
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 (a) (b) 

Figure 6. (a) Plot of ACF and (b) PACF of stationary data after regular and seasonal 

differencing (d=1, dan D=1, S=12) before the first intervention. 

 

Table 1.  Results of parameter estimation, parameter significance test, and diagnostic checking 

for ARIMA(0,1,1)(0,1,0)
12

 and ARIMA(1,1,0)(0,1,0)
12

 models 

ARIMA model 
Parameter Estimate 

P-

value 
MSE 

(0,1,1)(0,1,0)
12

 
1θ̂  0.6305 

< 
0,0001 

52296.39
*
 

(1,1,0)(0,1,0)
12

 
1  5234.0  

< 
0,0001 

5398704
*
 

* = residual satisfies white noise and normal distribution assumptions 
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Figure 7. Chart of response values of the amount of vehicles after the first intervention and prior 

to the second intervention 

 

Based on Figure 7, the appropriate order of the first step function intervention model is b=0, 

s=0, and r=0. It caused the residuals to remain constant, indicating a constant effect. The results 

of parameter estimation and significance test for the first intervention model show that all model 

parameters are significant (at the 5% significance level). Diagnostic checking of the model 

shows that the first step function intervention model has satisfied the assumptions of white noise 

and normally distributed residuals.  The intervention model for the amount of vehicles on the toll 

road after the first step function intervention and prior to the second step function intervention 

can be written as  
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After modeling the first intervention, i.e. the intervention model due to the new fuel tariff, 

analysis of the second step function intervention is conducted, namely the Lapindo mud flood 

since May 2006 which equates to 77t . The first step is to determine the order of the second 

intervention model. Figure 8 shows a chart of residuals for determining the order b, s, and r for 

the intervention model, which will be used to model the decrease due to the Lapindo mud flood. 
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Figure 8.  Chart of response values of the amount of vehicles after the second intervention 

 

Based on Figure 8, there are two possible set orders of the second step function intervention 

model. The first set order is 1b , 1s , and 1r  and the second is 1b , )6,3(s , and 0r . 

Parameter estimation and significance tests for the first and the second set of model orders show 

that all parameters of the intervention model are significant. Diagnostic checking shows that only 

the second set of model order yields residuals that satisfy the residual assumptions. Thus, we use 

the second intervention model to explain the effects of the Lapindo mud flood on the decrease of 

amount of vehicles on the toll road, i.e. 
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A residual plot from the second intervention model is shown in Figure 9. Based on Figure 9, 

there is no residual which is out of the interval ±4σ, although there is 1 residual out of the 

interval ±3σ (where σ is root of MSE). The next step is to evaluate the effects of the observation 

for which the residual is out of the ±3σ boudaries. 
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Figure 9.  Time series plot of residuals from the second intervention model 
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We can explain the presence of the residual which is out of the ±3σ interval, i.e. observation 

for April 2007. The reason why the data at April 2007 is out of the ±3σ interval is because the 

mud flood embankment near the Porong highway was broken. Hence, the mud flows to the 

Porong highway and caused the Porong highway to be closed for several days. This is an outlier 

event that can be categorized as a pulse function intervention. To determine the decrease due to 

the broken embankment, a pulse function intervention model with order 0b , 0s , and 0r  is 

employed. Parameter estimation and a significance test for the pulse function intervention 

addition show that all parameters are significant. A diagnostic check shows that residual has 

satisfied the white noise and normal distribution assumptions. 

In the previous section we showed that the predicted order of the second intervention model, 

i.e. 1b , )6,3(s , and 0r , is the best model for explaining the effects of the second step 

function intervention. Therefore, the best multi input intervention model is a model with order 

0b , 0s , and 0r  for explaining the impact of the first step function intervention (S1t), the 

new fuel tariff, a model with order 1b , )6,3(s , and 0r for explaining the effect of the second 

step function intervention (S2t), Lapindo mud flood, and a model with order 0b , 0s , and 

0r  for explaining the impact of the pulse function intervention (Pt) in April 2007, and 

ARIMA(1,1,0)(0,1,0)
12

 as the noise model. Mathematically, the best intervention model is 

written as 
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The calculation of the first step function intervention effect for the new fuel tariff, i.e. at period 

T, T+1, T+2, until T+k, where 8k  (October 2005, November 2005, December 2005, …, April 

2006) is 

 388512388512*   kTkT SY         (24) 

 

This implies that the new fuel tariff caused the decrease of the monthly amount of vehicles 

passing through the Waru-Gempol toll road by as many as 388512 vehicles. This decrease 

occurred after the new fuel tariff (October 2005) before the Lapindo mud flood happened in 

April 2006. Based on the best intervention model in Equation (23), the calculation of the 

Lapindo mud flood effect on the amount of vehicles is as follows. 
 

 Effect at period t = T  (May 2006) 

The amount of the second intervention effect at Tt   is 

  *

tY  
t

7

t S2ΒBBS1 )3.126029166275387180.8(388512 4   

  
741 3.126029 166275387180.8388512   TTTT S2S2S2S1  

  388512         (25) 

 Equation (25) implies that the Lapindo mud flood has not given any effect during the first 

month of the mud blast in May 2006. The explanation of this condition is because the mud 

blast occurred at the end of the month, i.e. on May 29, 2006. In this month, the decrease of 

388512 vehicles is caused by the first step function intervention, i.e. the new fuel tariff.  
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 Effects at periods t = T+1, T+2, and T+3 (June, July, and August 2006) 

The calculation of the amount of the second intervention effects on these 3 periods is 

 
.3,2,1 where8.775692

2126029216627528.3871801388512 741

*



 

k

SSSSY kTkTkTkTkT         (26) 

The result in Equation (26) shows that the Lapindo mud flood has reduced the amount of 

vehicles traveling on the Waru-Gempol toll road as many as 387181 vehicles every month 

for 3 following months (June, July, and August 2006). This is because the Lapindo mud blast 

is near to the Porong toll road so that road users tend to pick alternative routes in order to 

reach Malang or Surabaya. Overall, the decrease of vehicle numbers due to the new fuel 

tariff and Lapindo mud flood is as many as 775693 vehicles in those months. 

 

 Effects at periods t = T+4, T+5, and T+6 (September, October, November 2006) 

The amount of the second intervention effects at ,5,4  TTt and 6T   is 

 
.6,5,4 where8.941967

2126029216627528.3871801388512 741

*



 

k

SSSSY kTkTkTkTkT         (27) 

These calculations imply that the Lapindo mud flood has reduced the vehicle numbers as 

many as 553456 vehicles every month for the 4
th

, 5
th

, and 6
th

 months following to the month 

of the Lapindo mud blast (that is, September, October, and November 2006). The Lapindo 

mud flow started to reach and swamp the Porong toll road so that a single direction traffic 

system had to be applied to this toll road. This event and the previous new fuel tariff event 

made the decrease as many as 941968 vehicles in those months. 

 

 Effects at periods t = T+7 until T+k, where k=10 until the last observation i.e. December 

2007 (December 2006, January 2007, ... , December 2007) 

Calculation of the second intervention effects in these periods is 

 
.9,8,7 where8.1067996

2126029216627528.3871801388512 741

*



 

k

SSSSY kTkTkTkTkT         (28) 

Equation (28) shows that the Lapindo mud flood reduced the number of vehicles in the 

Waru-Gempol toll road as many as 679485 vehicles in the 7
th

, 8
th

, and 9
th

 months following 

to the month of the Lapindo mud blast (that is, December 2006, January and February 2007). 

This is because the permanent closure of the Porong-Gempol toll road since November 2006 

led to the amount of vehicles passing through the Waru-Gempol toll road to be reduced. The 

reduction of vehicle numbers due to new fuel tariff and Lapindo mud flood in this period is 

as many as 1067997 vehicles. 
 

Based on the intervention model given in Equation (23), the calculation of the broken Lapindo 

mud embankment effect in April 2007 is  

 

.2007) (April 88 where8.1273545

2055498.1067996

2055492126029216627528.3871801388512 741

*





 

T

PSSSSY tTTTTT
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This calculation shows that the broken mud embankment in April 2007 has reduced the number 

of vehicles passing through the Waru-Gempol toll road to 205549 vehicles. This is because the 

condition of road in Porong was so poor that it could not be used by vehicles. Therefore, road 

users chose alternatives routes to Malang or Surabaya. 

The reconstruction of the overall intervention model effects, including the first intervention 

S1t and the second intervention S2t, and also the pulse function intervention Pt, can be seen in 

Figure 10. This graph shows that the theoretical effect reconstruction for the intervention model 

yields prediction data which is close to the actual data. 

 

 
Figure 10.  Theoretical effect reconstruction for the multi input intervention model 

 

 

5. COMMENTS AND CONCLUSION 

 

The appropriate intervention model for the number of vehicles in the Waru-Gempol toll road due 

to the new fuel tariff and Lapindo mud flood is an intervention model with order 0b , 0s , and 

0r  for explaining the impact of the first step function intervention )1( tS , namely the new fuel 

tariff, and an intervention model with order 1b , ]6,3[s , and 0r  for explaining the impact of 

the Lapindo mud flood as the second step function intervention )2( tS , and a model with order 

0b , 0s  and 0r  for explaining the effect of the pulse function intervention )( tP  in April 

2007, with ARIMA (1,1,0)(0,1,0)
12

 as the noise model, which can be mathematically written as  

.
)1)(1)(56475.01(
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Calculation of the amount and the period of the effects for each intervention are as follows: 

a. The application of the new fuel tariff has caused a decrease of vehicles in the Waru-

Gempol toll road as many as 388512 vehicles every month since the first step function 

intervention occurred (October 2005) until the last observation (December 2007). 
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b. Generally, the Lapindo mud flood has caused a decrease of vehicles in the Waru-Gempol 

toll road. There are 3 phases of different reductions, i.e. 

(i). Decrease as many as 387181 vehicles on period 1-3 months since the mud blast (June 

– August 2006). 

(ii). Decrease as many as 553456 vehicles on period 4-6 months after the mud blast 

(September – November 2006). 

(iii). Decrease as many as 679485 vehicles since December 2006 until the last observation 

(December 2007). 

c. The Broken Lapindo mud embankment in April 2007 has caused a decrease in the number 

of vehicles passing through the Waru-Gempol toll road by as many as 205549 vehicles. 

 

This research shows that the proposed procedure for multi input intervention model building has 

been applied well at certain real data. Further research opportunities include the application of 

this multi input intervention model to other real data sets to further validate this new procedure.  
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ABSTRACT 

 

Economic planners associated with the classical school of thought may be a little hesitant to 

recognize the changes taking place in the business and economic environment due to the 

emergence of the New Economy. Globalization of businesses and the resultant emergence of 

new business entities in the form of franchises, networked organizations, distributed 

organizations and EDI (Electronic Data Interchange) integration has completely changed the way 

trade is being conducted. The novel paradigm of the New Economy which is also referred to as 

the knowledge economy is much more complex than its predecessor system. Many of the critical 

factors controlling the dynamics in this system belong to  an intangible domain and cannot be 

directly controlled by the governments .It has become very difficult to plan successful FDI 

(Foreign Direct Investment) , FTA ( Free Trade Agreements) or any other integrated commerce 

activity without bringing into consideration the impact of intangibles affecting the regional 

economic system. We present a literature survey to provide a critical review of emerging tools 

for the strategic management and policy analysis domains. A conceptual framework is developed 

that after further in-depth study of the particular factors involved in a given country can be used 

as a strategic management tool by policy makers to take strategic decisions and visualize the 

nation’s development policies in the knowledge economy. It is argued that if a nation is able to 

manage and improve its intangible assets, its economic value generation capacity would increase 

and result in the nation moving towards prosperity.  

 

Keywords: Policy development framework, Economic Policy, Knowledge Economy, New 

Economy, Intangible Asset Monitor, Strategic Management  

 

1. INTRODUCTION 

 

The roots of the English word “wealth”, which is used to denote economic status, originated 

from the old English word “Weal”; which was used as an adjective to describe the ownership of 

great qualities. It is unfortunate that present usage of word wealth is narrowly applied to 

represent monetary value alone. Adam (1776) while investigating the causes of the wealth of 

nations, states that the wealth of a nation consists in the well-being of the mass of ordinary 

citizens, arguing later that the best contribution governments can make to the wealth of their 

nations and to the progress of human society is to leave individuals free to follow their natural 

tendency to make exchanges. Criticizing the mercantile system of public policy, Adam (1776) 

comments that it was once thought that the wealth of a nation existed in money (gold and silver) 

and therefore the governments worked to make their countries wealthy by restricting the export 
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of gold and silver. It was perceived that since money can be translated easily and quickly into 

military power, countries must have high gold and silver available to buy arms and soldiers in 

time of war. However, the merchant class had a different opinion. They viewed this as 

inconvenient, because they needed to send gold and silver abroad for business activities. The 

business community persuaded governments to view success of a country on the bases of "the 

balance of trade", which is the relation between imports and exports of a country. The business 

community argued that what makes a country rich is when its exports are higher than its imports. 

The governments responded by making policies that encouraged local production and exports 

while making policies to hinder imports, what we call "protectionism" in modern terms.  

Though it has been more than two hundred years, economists started to acknowledge the 

potential role of manufacturing in the economics of a society(UNDP, 2003). But with the rapid 

developments in IT and communication sciences, the world has entered a new phase - an era in 

which the wealth of nations is dependent on its ability to create, transform and capitalize 

knowledge. The era of knowledge-based industries have arrived, where employee know-how, 

innovative capabilities, and skills are the brainpower of an organization. These new factors are 

playing a predominant role in the productive power of the corporation. 

Human resources now account for an increasing proportion of the capital generation in 

industries (Sveiby 1997). Empirical studies suggest that a major percent of the value created by a 

firm comes, not from management of traditional physical assets, but rather from the management 

of its intangible assets (Prusak 2001, Sveiby 2002).  It is argued that the science and technology 

sectors are expanding faster than most of the other industries. This rapidly increasing demand for 

knowledge-based products and services is changing the structure of the global economy and 

transforming the economic infrastructures of many countries, including Islamic countries like 

Pakistan (Kalim and Lodhi 2002, 2004). There is a general consensus that in the new economic 

paradigm.3 factors have become evident 

1) The wealth of a nation is no longer limited to its natural resources. Traditional national 

assets like oil, minerals, agricultural and manufactured products are now complemented 

with a new, nontraditional category of resources in the form of intangible asset, which 

include law and order situation in a country, quality and level of education, health 

services provided by government etc. 

 

2) Knowledge is a primary competitive factor in modern economy. 

 

3) The accumulation, transformation, and value creation from knowledge requires active 

and voluntary participation of intellectuals. Therefore, countries should adopt strategies 

to maximize an environment of collaboration.  

 

This discussion of the new economic paradigm and “wealth” cannot be concluded without 

mentioning the opposite of “wealth”, which is “poverty”. The new paradigm has redefined the 

concept of poverty also. Conventionally governments reports Per Capita GDP as an indicator of 

economic wellbeing in a country. But many (for example, Saunders 2002) have argued that 

measuring poverty in financial terms is too narrow a view. Poverty means much more than just 

lack of financial earning and must be viewed in a holistic manner. The population in a region is 

not just poor; this is usually also correlated with low education, health care facilities, corruption 

and general unrest. It is argued that simply providing the poor with additional income would not 

solve anything. The socio-economic system in a society must be developed to improve the 
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performance of a community and make it sustainable in the region. Peter (SPRC 2004) provides 

a collection of alternative definitions of poverty arguing that not having opportunities for social 

achievement such as taking part in the community-life, having equal opportunity for intellectual 

development etc, health care etc, should be considered as social dimensions of poverty. This 

provides researchers with the prospect of using social indicators for measuring wealth.  

In the light of the broader definitions of poverty UNDP (2007) reports the Human 

Development Index (HDI) of the countries in the world. Table 1 gives the HDI of selected 

countries for the year 2005. Angola and Tanzania have Human Development Index scores of 

0.446 and 0.467 respectively, but their GDP per capita are significantly different. It can be seen 

that the population living in Tanzania earn much less than the population of Angola, but have 

much better living conditions than that of Angola. Thus, HDI presents the social aspect of 

poverty in a much better form than GDP alone . The GDP can only present  the financial 

dimension of wealth and therefore should not be viewed or reported in isolation. 

 

 

Table 1 Human Development Index and GDP Per Capita Selected Country Data for the Year 

2005 

Country HDI 
GDP Per Capita (PPP 

US$) 

Iceland 0.968 36,510 

Czech Republic 0.891 20,538 

United Arab 

Emirates 
0.868 25,514 

Chile 0.867 12,027 

Bahrain 0.866 21,482 

Egypt 0.708 4,337 

Pakistan 0.551 2,370 

Bhutan 0.579 1,969 

Tanzania 0.467 744 

Angola 0.446 2,335 

Sierra Leone 0.336 806 

Source: UNDP Human Development Report 2007 

 

 

Inequalities are not limited to income, although Gini coefficient and income-share inequality 

numbers provide a fair picture of ground realities, other inequalities are also important. For 

instance, the quality of basic services like health, education and rule of law provided to the 

majority population can provide a picture of inequalities in practice. The poor members of 

society may have a greater need for health services as they are at a higher risk of getting sick due 

to lack of clean drinking water and sanitation conditions. Similarly, poor population may have a 

higher mortality rate due to lack of medical care and low nutrition, but in practice they may not 

be getting their due share of these services from the governments. Education can play an 

important role in improving quality of life in a region, since as the level of education in a society 

is increased it becomes more productive. It also plays the role of catalyst in improving 

effectiveness of health awareness programmes. The condition of the law and order system of a 
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society and its practice plays a vital role in development of a society. If a law treats poor and rich 

differently, the society cannot develop.  

 

All these societal characteristics form part of the intangible assets of a nation. These intangible 

assets may be very difficult to measure can be viewed as the true national wealth. If a nation is 

able to improve in these areas, its value creation capacity will increase. Viewing this from a 

systems perspectives, as these sub-processes improve the output of the system as a whole 

(nation) will improve, resulting in more value addition.  

 

2. FRAMEWORK FOR MEASURING ABSOLUTE WEALTH OF NATIONS 

 

Researchers have applied a number of frameworks for measuring these intangible assets or 

wealth of the nation. Skandia Navigator is used by some researchers (Edvinsson and Malone 

1997) for measuring and developing national policy initiatives. Later, Rembe (1999) investigated 

the intangible assets of Sweden with the objective of increasing foreign investment in the 

country. This study used metrics to develop a strategic plan for the future directions in Sweden. 

Rembe (1999) defines a human capital index based on quality of life, life expectation, education, 

etc., a market capital index based on tourism, service balance, etc., a process capital index based 

on management quality, information and communication technologies, etc., and renewal capital 

index based on research and development, ratio of young to old  people, etc. Further studies were 

initiated for evaluating the Intellectual Capital of Sweden and Organization for Economic 

Cooperation and Development O.E.C.D countries (O.E.C.D 2000),. Malaysia (Bontis et al. 

2000), and the Arab Region (Bontis, 2002, Bontis 2004). . Extending these concepts Malhotra 

(2003) discussed methods for measuring intangible assets of nations extensively. He modified 

the Balance Scorecard (Kaplan and Norton 1992) to suggest a framework for measuring and 

managing knowledge assets of a nation. Bontis (2001, 2004) also discussed methods for 

measuring intangible assets.  

After a careful review of methods for measuring tangible and intangible assets, we selected 

Intangible Asset Monitor (IAM) of Sveiby 1997 as base model, and extended it for assessing the 

wealth of nations. Figure 1 gives a suggested framework for viewing the wealth of nations in the 

new economy. The total wealth of a country may be viewed as sum of its tangible and intangible 

assets. The tangible assets of a nation would include traditional resources of nations like forests, 

mineral resources, oil, factories, roads network, communication infrastructure, agricultural and 

other material products. All assets that are tangible are viewed under this category. But as seen 

above the wealth of a nation is not limited to tangible assets only; intangible assets are also 

important. Intangible assets are further classed into three categories; namely (1) External 

Structure (2) Internal Structure and (3) Competence.  

The External Structure includes a nation’s external relations, its trade agreements like FTAs 

(Free Trade Agreement), RTAs (Regional Trade Agreement), defense pacts, participation in 

international bodies, the image of a country in the  international community etc. The value of 

these assets would be illustrated in the form of influence the country is able to exercise 

internationally and solve its global issues. The Internal Structure of a country that adds to a 

national wealth includes all factors that may promote collaboration, knowledge sharing and 

innovation in a country. Therefore the internal structure of a country would include the 

functioning of the justice system, democracy, education system, health system, right to 

information and freedom to form associations, basic human rights etc.  
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Figure 1 Framework for Measuring Wealth of Nations (Extended from IAM Sveiby 1997) 

 

 

The third category of Intangible assets is “Competence”, which would include factors such as the 

literacy rate in a country, the quality of research activity taking place, the effectiveness of 

professional associations, etc. The list of three categories for intangible assets is not limited and 

can be expanded. We therefore argue that the wealth of the nations should not be measured 

through financial resources alone, but should also include intangibles such as level of community 

services, maturity of processes in government and business (good governance), intellectual 

freedom etc.  If a nation scores low on these intangibles, it will not be able to perform well in the 

knowledge economy. Presently there is no standard scale available to measure the intangible 

wealth of nations. Research in this critical domain is needed to develop indices for measuring 

and comparing the intangible assets of i countries. In order to explain this idea further, a three-

dimensional plot between Human Development Index, Corruption Perception Index (CPI) and 

GDP per Capita is shown in figure 3.  

The HDI is used to indicate the living standard of general population in a country which can 

also be seen as a measure of good governance. . CPI scores from Transparency International 

(2008) are used as an indicator for measuring maturity of processes. A country scoring low on 

CPI would mean that its processes and controls are not mature enough to prevent corruption. The 

purpose of this plot is to show a wider picture in which nations are not compared on a financial 

basis alone. It can be seen that a number of  OIC (Organization of The Islamic Countries) 

countries are found with low CPI score, meaning that there is a critical need to improve business 

and management systems in these countries. The HDI in most OIC countries is also found to be 

low, an indication that the standard of living in these countries is not high. Referring to Table 1, 

it can be seen that UAE has an HDI score of 0.868 with GDP per Capita of approximately US $ 

25,500 which is less than the HDI score of the Czech Republic which is 0.891. The Czech 

Republic is able to achieve this HDI score on GDP per Capita of approximately US $ 20,500, 

which is lower that of UAE. Similarly the comparison of Bahrain and Chile show that Chile is 

able to maintain the same level of governance but with a lower GDP than Bahrain. 

  

National Wealth 

Tangible Assets Intangible Assets 

1- External Structure 

2- Internal Structure 

3- Competence 
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Figure 2 3D Plot between HDI, CPI and GDP per Capita Selected OIC Countries 

 

 

3. DEVELOPING ECONOMIC POLICIES FOR THE NEW ECONOMY 

 

Development economists, policy makers and social scientists are well aware of the 

interdependent nature of national policies. Initiatives taken to improve literacy under education 

policy are beneficial not only for health related initiatives, but they also strengthen economic 

activities in a region. Similarly, the foreign policy of a country cannot work in isolation; it will 

have a corresponding effect on the country’s trade policy. 

This framework for viewing national assets can be used for designing development policies 

of a nation in the New- Economy. Keeping in view the complexity and highly interdependence 

of national policies, a policy matrix may be developed; instead of following the traditional 

approach of developing a single policy for a specific purpose. The policy makers may view the 

assets of a nation using the framework and accordingly , develop policies to build up the tangible 

as well as intangible assets of a nation. Once a nation starts to progress by building its intangible 

assets, the human development index (HDI) of the country would also start to improve, meaning 

that quality of life in the region would increase. This would have a positive outcome on external 

structure, internal structure and competence of a country, finally resulting in an increase in 

business opportunities in the region.  

A policy matrix developed in the light of the extended IAM for nations is given as figure 3. 

This figure presents only the framework, the details are intentionally left out for the purpose of 

simplicity. Developing guidelines for an economic policy using the policy matrix is beyond the 
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scope of this paper. Since this paper is limited to developing a framework and does not intend to 

develop indicators. A detailed study will be needed before deciding on indicators, as the policies 

must be aligned with strategic directions in which the nation intends to move.  

In practice the policy makers would first have to develop indicators for assessing the status of 

each category of intangible asset of a country and then in the light of these indicators, the policy 

makers may propose initiatives for building these assets. Following this policy matrix frame 

work will also ensure that the policies developed should include efforts to renew, improve 

utilization and minimize risk of losing these national assets.  
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Figure 3 A Policy Matrix for Enhancing National Assets (Extended from IAM Sveiby 1997) 

 

 

4. CONCLUSION 

 

The wealth of a nation in the New-Economy is integrated with the complex socio-economic 

structure of the society, and cannot be measured by financial dimensions alone. It is more closely 

related with the quality of life of the people living in a region and includes much more than 

simply the earning capacity of the population. Low income in a region is the result of low 

performance of its social systems. In other words, low income is the effect of poverty and not a 

cause itself. Therefore, policies aim to increase financial earning alone would not be expected to 

be successful in raising a region out of poverty. The framework presented can be used to view 

areas in which the country has potential, but in which this potential is underutilized or to identify 

areas that may be of critical importance for the growth of the economy. 

Indicators for measuring the present status and growth of intangible assets are developed and 

then taking these indicators as basis; policies for improving the intangible assets can be 

developed and placed in policy matrix framework. The improvement in the intangible assets due 

to policy initiatives will be reflected by an increase in the indicator value in successive year’s 

status report. Policy initiatives which may be linked with improving intangible assets may be 

continued or improved, whereas initiatives which may be a cause of decrease in indicator value 

may be abandoned. The framework helps in understand the interdependence of Government 

policies within different sectors and ensure that the overall development policy is not in 

contradiction with any of its lower level (sector specific) policies. 
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Table 2: World Bank Development Indicators Selected OIC Countries 
 

 

Country 

GDP 

Per 

Capita 

(PPP 

US$) 

2005 

Global 

Competi-

tiveness 

Index 

(GCI) 

(2008-

09) 

HDI 

2005 

CPI 

score 

2007 

MDG 

Net 

primary 

enrolment 

rate 2005 

MDG 

Population 

Undernour-

ished 

2004 

MDG 

Population 

using an 

improved 

water 

source 

2004 

MDG 

Popula-

tion 

below 

income 

poverty 

line 

Malaysia 10882 5.04 0.811 5.1 95 3 99 15.5 

Qatar  27664 4.83 0.875 6.0 96 NA 100 NA 

Saudi Arabia 15711 4.72 0.812 3.4 78 4 90 NA 

UAE 25514 4.68 0.868 5.7 71 2.5 100 NA 

Kuwait 26321 4.58 0.891 4.3 87 5 NA NA 

Bahrain 21482 4.57 0.866 5.0 87 NA NA NA 

Oman 15602 4.55 0.814 4.7 76 NA 80 NA 

Brunei 28161 4.54 0.894 NA 93 4 NA NA 

Jordan  5530 4.37 0.773 4.7 89 6 97 14.2 

Indonesia 3843 4.25 0.728 2.3 96 6 77 27.1 

Turkey 8407 4.15 0.775 4.1 89 3 96 27 

Morocco 4555 4.08 0.646 3.5 86 6 81 19 

Syria 3808 3.99 0.724 2.4 95 4 93 NA 

Egypt 4337 3.98 0.708 2.9 94 4 98 16.7 

Libya 10355 3.85 0.818 2.5 NA 2.5 71 NA 

Nigeria 1128 3.81 0.470 2.2 68 9 48 34.1 

Senegal 1792 3.73 0.499 3.6 69 20 76 33.4 

Algeria 7062 3.71 0.733 3.0 97 4 85 22.6 

Pakistan 2370 3.65 0.551 2.4 68 24 91 32.6 

Albania 5316 3.55 0.801 2.9 94 6 96 NA 

Bangladesh 2053 3.51 0.547 2.0 94 30 74 49.8 

Tanzania 744 3.49 0.467 3.2 91 44 62 35.7 

Tajikistan 1356 3.46 0.673 2.1 97 10 79 NA 

Iran 7968 NA 0.759 2.5 95 4 94 NA 

Sudan 2083 NA 0.526 1.8 43 26 70 NA 

  Legend:  HDI = Human Development Index GCI = Competitiveness Index 

CPI =  Corruption Perceptions Index MDG = Millennium Development Goals  

 

Policies should be designed to improve the social system as a whole. This is not something that 

can be attained in a short time or with a little effort. A continuous focus and growth in the right 

direction is needed for development of a sustainable socio-economic system. 
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ABSTRACT 

 

In this paper, a practical approach based on the adaptive kernel density estimation (AKDE) has 

been applied for deriving some characteristics for the confidence intervals (CIs) of the Type-II 

Extreme Value distribution parameters. The proposed approach utilized the non-parametric 

AKDE as a tool for estimating the density function of a pivotal that depend on the unknown 

parameter and thus the characteristics for the confidence intervals can be studied. The efficiency of 

this technique has been studied comparing to the conditional inference on the basis of the mean 

lengths, the covering percentages and the standard error for the covering percentage of the 

confidence intervals, via Monte Carlo simulations and some real data. From our results it appears 

that the kernel approach competes and outperforms the conditional approach and has a number of 

appealing features, it can perform quite well and attains a good level of accuracy even when the 

number of bootstraps is extremely small. Finally, a numerical example is given to illustrate the 

densities based on the inferential methods developed in this paper.  
 

Keywords: Adaptive kernel density estimation; Conditional inference; Covering percentage; The 

standard error of the covering percentage . 
 

1. INTRODUCTION 
 

In statistical inference, the classical approach offers a consistent way for using the pivotal 

quantities in inference since Student’s paper (1908) that derived exact treatment for the mean of a 

normal sample and since that time numerous exact solutions have become available. In general, it 

is not possible to evaluate probability points for the pivotal analytically, but unconditional 

probability points can be computed, via extensive Monte Carlo simulations, see Thomas et al. 

(1969). This work introduces a new unconditional approach in statistical inference for estimating 

the density function of a pivotal, via the non-parametric (AKDE), which is asymptotically 

converges to any density function depending only on a random sample, though the underlying 

distribution is not known. This approach has been applied recently on some distributions, see 

Maswadah (2006, 2007, 2009). As a continuation for these efforts, in this paper the statistical 

analysis of the proposed procedure has been studied and its performances compared, via Mote 

Carlo simulations and some real data, to the performances of the classical conditional inference 

when the experimental data are collected under complete samples from the Type-II Extreme Value 

distribution (EVD) or (Fre'chet distribution), which has probability density function given by:  

0,>,))/((=)( )1( xxexpxxf   
  (1.1) 
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where ( 0> ) and ( 0>  ) are the shape and scale parameters respectively. This distribution is a 

commonly applied as skewed distribution, however the traditional applications involving 

analyzing natural catastrophes such as wind gusts, drought, rainfall, flood, etc. and recently the 

most important application of the EVD is in molecular biology where the DNA protein sequences 

are aligned with those in a database. Thus for its importance, it has been studied by several authors, 

see Gumbel (1965) derived the estimations for the parameters based on the methods of moments, 

the reciprocal moments and the maximum likelihood, Harter and Moore (1968) derived the 

conditional maximum likelihood estimates (MLEs) for singly censored samples, Singh (1987) 

derived the MLEs based on the m-th extremes of several samples, Singh et al. (1989) derived the 

MLEs based on the joint distribution of largest m extremes of several samples, Eldusoky et al. 

(2003) derived the Bayesian estimation of the parameters and reliability based on complete and 

censored samples and Maswadah (2005) derived the conditional confidence intervals for the 

parameters based on censored generalized order statistics, for a detailed discussion on various 

properties and uses of this distribution, see Johnson et al. (1995). 

 

2. KERNEL ESTIMATIONS 

 

In this section, the basic elements associated with the adaptive kernel estimators of the density 

function are presented, which has been extensively studied see, for example Guillamon et al. (1998, 

1999). Also a good discussion on kernel estimation techniques can be found in Scott (1992). 

In the univariate case, the adaptive kernel density estimation based on a random sample of size 

n  from the random variable X  with unknown probability density function )(xf  and support on 

)(0,  is given by  

,
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where ii hh =  and i  is a local bandwidth factor which narrows the bandwidth near the modes 

and widens it in the tails and can be defined as:  
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where G  is the geometric mean of the )(ˆ
ixf , ni 1,2,...,=  and h  is a fixed (pilot) bandwidth. We 

can see that our estimate  xf̂  is bin-independent regardless of our choice of K , where the role of 

K  is to spread out the contribution of each data point in our estimate of the parent distribution; that 

is, controls the shape. Though there are variety of kernel functions with different properties have 

been used in the literature, but an obvious and natural choice of K  is the Gaussian kernel for its 

continuity, differentiability and locality properties. 

The most important part in the kernel estimation method is to select the bandwidth (scaling) or 

the smoothing parameter. Its selection has been studied by many authors, see Abramson (1982), 

Terrell (1990) and Jones (1991), based on minimizing the mean square errors, thus the optimal 

choice in most cases is 
0.21.059=  nSh  , where S  is the sample standard deviations and we 

will considered it as the pilot bandwidth. However, it must be mentioned that the optimal choice 
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for h can not possibly be optimal in every application and its choice is really depend on the 

application under consideration, and in some situations it might be quite useful to have a set of 

estimators corresponding to different bandwidths. 

To utilize the kernel function for estimating the probability density function (pdf) of a pivotal, 

we can summarize the method in the following algorithm:  

  

1- Let iX , ni 1,2,...,=  be a random sample of size n from the random variable X , whose pdf 

is );( xf , where   represents the unknown parameter with support on ( 0, ).  

2- Bootstrapping with replacement n  samples *

iX , ni 1,2,...,=  of size n  from the parent 

sample in step 1.  

3- For each sample in step 2 calculate the pivotal quantity Z  based on the parameter   and its 

consistent estimator such as the MLE. Thus we have an objective and informative random 

sample from the pivotal quantities iZ , ni 1,2,...,=  of size n , which constitute the 

informative sample for the pivotal Z .  

4- Finally, based on the informative sample in step 3 we can use the AKDE for estimating 

)(zg  at any given value for Z  and thus the confidence interval of the pivotal can be 

constructed and converted to the unknown parameter Fiducially. 

 

Utilizing the above algorithm, the AKDE of the quantile pz of order p , for Z  can be derived as:  
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where  

.)(=)( dyyKx
x

 
                                               (2.5)  

For deriving the value of the quantile estimator pz , equation (2.4) can be solved recurrently as 

the limit of the sequence  ,.......~,~,~
321 zzz  that defined by the formulas  
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The convergence of (2.7) is guaranteed by the condition 
1

2
<0

nL

h
C i , where (0)=1 KL , see 

Kulczycki (1999).  
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3. CONDITIONAL INFERENCE 

 

In this section we outlined the key ideas for constructing the confidence intervals of the extreme 

value parameters based on the conditional inference. For more details about this method see 

Lawless (1972, 1982) who applied this approach on some lifetime distributions. Let  ˆ/=1Z  

and  ˆ= )/ˆ(2Z  be pivotal quantities for the parameters   and  , depending on their MLEs 

̂  and ̂  respectively, and define 

ˆ

)ˆ/(= ii xa , for ni 1,2,....,=  as the ancillary statistics. 

Make the change of variables from (
n

xxxx ,...,,,
321

), whose pdf is (1.1) to ( A,ˆ,ˆ  ), where 

)...,,(= 221 naaaA . This transformation can be written as 

 

    
 ˆ1/ˆ= ii ax , 2.1,2,....,= ni , 

 ˆ1/

11
ˆ=  nn ax  and 

 ˆ1/ˆ= nn ax ,  

 

where na  and 1na  can be expressed in terms of A . The Jacobin of this transformation is 

independent of 1Z  and 2Z . Making further the change of variables from ( A,ˆ,ˆ  ) to ( AZZ ,, 21 ), 

the Jacobin of this transformation is proportional to 211/ ZZ . Finally the conditional pdf of 1Z  and 

2Z  given A  can be derived as:  
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where C is the normalizing constant independent of 1Z  and 2Z . The marginal densities of 1Z  and 

2Z  conditional on A  can be derived respectively as:  
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Using equations (3.2) and (3.3) , we can find the desired probabilities for 1Z  and 2Z  and thus the 

confidence intervals for the parameters   and   can be derived Fiducially.  

It is clear that both procedures depend on the MLEs of the parameters   and   based on the 

complete sample, which can be derived for the underlying distribution by taking the derivatives of 

the log likelihood function of (1.1) with respect to   and   respectively, and setting equal to zero 

yielding the two equations:  
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Thus using an iterative technique such as Newton-Raphson method for solving (3.5), we can 

derive the MLE for   and thus for   from (3.6). 

 

4. SIMULATION STUDY AND COMPARISONS 

  

The confidence intervals have become familiar in applied statistics, they combine point estimation 

and hypothesis testing into a single inferential statement of great intuitive appeal. Thus the 

characteristics of these intervals for the unknown parameters have been studied, via Monte Carlo 

simulations, based on the two approaches to measure their performances in terms of the following 

criteria:  

 

1- The Covering percentage( CP  ), which is defined as the fraction of times the CI covers the 

true value of the parameter in repeated sampling. Thus if the CP  is greater than ( less than ) 

the nominal level then the procedure is conservative ( anti-conservative ).  

2- The mean length of the intervals ( MLI  ), which is defined as the average length of the 

intervals in repeated sampling. If a short interval has high CP , the data allows us to estimate 

the parameter accurately. Though, higher CP  generally requires a longer interval and short 

interval generally have lower CP . Therefore the procedures with the same CPs , the one that 

provides shorter interval is better.  

3- The standard error of the covering percentage ( SDE  ), which is defined for the nominal level 

)100%(1   by 
M

SDE
)ˆ(1ˆ

=)ˆ(



 , where )100%ˆ(1   denote the corresponding Monte 

Carlo estimate and M  is the number of Mote Carlo trials. Thus for the nominal level 95%  

and 1000  simulation trials, say, the standard error of the covering percentage is 0.0049 , 

which is approximately 1% . Therefore, we say the procedure is adequate if the SDE is 

within 2%  error for the nominal level 95% .  

 

The comparative results, based on 1000  Monte Carlo simulation trials are given for sample sizes 

8060,40,20,=n  and 100  which have been generated from the EVD for shape parameter values 

21,,0.5=  and 3 . The scale parameter  was set to 2 throughout, where all estimations are 

equivariant under scale chages of the data, so setting one value for   involves no loss of 

generality. The confidence intervals for the pivotals and the corresponding parameters are derived 

and their characteristics CP s, MLI s and SDE s are calculated and discussed in the following 

main points:  
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1- The results in Table 1 indicated that, the values of the CP , MLI  and SDE  for 1Z  have the 

same values for the different values of   and also they have the same values for 2Z  as 

expected because they are independent from the parameters   and  . Thus we have written 

their values for the sample size 40=n  only.  

2- The results in Table 2 indicated that, as the sample size increases, the two approaches have 

values of MLIs  and CPs  getting decrease and the values of SDEs  getting increase for 1Z  

and 2Z  for all values of   .  

3- The results in Table 2 indicated that, the values of the MLI  based on the kernel approach are 

less than those based on the conditional approach. However the values of the CP  are greater 

and thus the values of SDE  are lesser than those based on the conditional approach.  

4- The results in Table 3 indicated that, The values of MLI  decrease as the sample size increases 

for both parameters   and   , however the values of MLI  for   increase with the same 

average of increasing   as expected. Also the values of MLI  for   decrease with increasing 

the values of the shape parameter  .  

5- The kernel approach is conservative for estimating the parameters   and   because the 

covering percentages are much greater than the nominal level than the ones based on the 

conditional inference for all sample sizes. On the contrary the conditional approach is 

anti-conservative for estimating   and almost conservative for estimating  , when the 

sample size greater than 20.  

6- Finally, both the two procedures are adequate because the SDEs  are less than 2%  for the 

nominal level 95% .  

 

Thus the simulation results indicated that the kernel intervals possess good statistical properties 

and they can perform quite well with reasonable accurate results even when the number of 

bootstrapping are extremly small.  

 

 

Table (1) : The Kernel and conditional (MLIs), (CPs) and (SDEs) based on the nominal level 95%  

and n =40 for the Pivotals 1Z  and 2Z . 

 

Pivotals  

 
  

                    Kernel                   Conditional   

 MLI   CP   SDE   MLI   CP   SDE 

  

 

    1Z   

  

 0.5   0.4681   0.950   0.0069   0.4839   0.941   0.0075  

 1.0   0.4681   0.950   0.0069   0.4839   0.941   0.0075  

 2.0   0.4681   0.950   0.0069   0.4839   0.941   0.0075  

 3.0   0.4681   0.950   0.0069   0.4839   0.941   0.0075  

     

 

    2Z   

0.5  0.7143   0.976   0.0048  0.6969   0.939   0.0076  

 1.0   0.7143   0.976   0.0048   0.6969   0.939   0.0076  

 2.0   0.7143   0.976   0.0048   0.6969   0.939   0.0076  

 3.0   0.7143   0.976   0.0048   0.6969   0.939   0.0076  
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Table (2) : The Kernel and conditional (MLIs), (CPs) and (SDEs) based on the nominal level 95%  

for the Pivotals 1Z  and 2Z . 

 

Pivotals  

 

N  

                     Kernel                Conditional 

 MLI  CP  SDE  MLI  CP  SDE 

  

 

    1Z   

  

  

 20   0.6710   0.982   0.0042   0.6365   0.937   0.0077  

 40   0.4681   0.950   0.0069   0.4839   0.941   0.0075  

 60   0.3859   0.953   0.0067   0.3963   0.953   0.0067  

 80   0.3309   0.953   0.0067   0.3449   0.949   0.0069  

100   0.2973   0.951   0.0068   0.3064   0.946   0.0071  

     

 

    2Z   

  

 20   1.2450   0.980  0.0048   1.0637   0.945   0.0072  

 40   0.7143   0.976   0.0048   0.6969   0.939   0.0076  

 60   0.5551   0.951   0.0068   0.5562   0.963   0.0059  

 80   0.4684   0.957   0.0067   0.4763   0.947   0.0071  

100   0.4133   0.953   0.0076   0.4233   0.955   0.0066  

 

 

Table (3) : The Kernel and conditional (MLIs) based on the nominal level 95%  and the values of 

.3,0.5,1,2=  for the parameters   and  . 

  

Parameter  

 

N  

            Kernel          Conditional 

= 0.5  = 1.0    = 2.0  = 3.0  = 0.5  = 1.0  = 2.0 = 3.0 

  

 

        

  

  

 20   

0.3746  

 

0.7493  

 

1.4985  

 

2.2478  

 

0.3435  

 

0.6870  

 

1.3740  

 

2.0609  

 40   

0.2515  

 

0.5029  

 

1.0058  

 

1.5087  

 

0.2540  

 

0.5081  

 

1.0161  

 

1.5242  

 60   

0.1983  

 

0.3967  

 

0.7934  

 

1.0175  

 

0.2021  

 

0.4042  

 

0.8084  

 

1.2126  

 80   

0.1696  

 

0.3392  

 

0.6783  

 

1.0175  

 

0.1750  

 

0.3501  

 

0.7001  

 

1.0502  

1 100   

0.1521  

 

0.3041  

 

0.6082  

 

0.9124 

 

0.1553  

 

0.3107  

 

0.6214  

 

0.9321  

 

 
        

   

 20   

6.0234  

 

2.6578  

 

1.1379  

 

0.7342  

 

5.9361  

 

2.2287  

 

1.0243  

 

0.6697  

 40   

3.2447  

 

1.4139  

 

0.6797  

 

0.4491  

 

3.2116  

 

1.4096  

 

0.6781  

 

0.4480  

 60   

2.4388  

 

1.1120  

 

0.5405  

 

0.3571  

 

2.4529  

 

1.1316  

 

0.5523  

 

0.3662  

 80   

1.9726  

 

0.9297  

 

0.4569  

 

0.3035  

 

2.0620  

 

0.9672  

 

0.4744  

 

0.3149  

100   

1.7072  

 

0.8243  

 

0.4064  

 

0.2700  

 

1.7718  

 

0.8493  

 

0.4197 

 

0.2786  
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5. NUMERICAL EXAMPLE 

 

In this section, via studying some real data, we will measure the performance of the bandwidth that 

selected in the kernel approach to see how well it performs in practice and how well the conclusion 

based on the real data will be consistent with the conclusion in the simulations. Thus considering 

the data given by Dumonceaux and Antle (1973), that represents the maximum flood levels (in 

millions of cubic feet per second) of the Susquehenna River at Harrisburg, Pennsylvenia over 20 

four-year periods (1890-1969) as: 

 

 0.654, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324, 

 0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484, 0.265. 

  

The MLEs  for the parameters   and   based on this data are given respectively as 4.3143 and 

0.3583. Thus for the purpose of comparisons, the 95%  probability intervals for the pivotals 1Z  

and 2Z  and their corresponding parameters   and   are derived based on the kernel and the 

conditional approaches. The results in Table 4 have been indicated that the length of intervals for 

the pivotals 1Z  and 2Z  based on the kernel approach are shorter than those based on the 

conditional inference and thus the conclusions are the same for their corresponding parameters   

and  , and they contain their MLEs for the two approaches , which ensure the simulation results.  

 Finally, in Figure 1 the probability densities of 1Z  based on the kernel and the conditional 

inferences are plotted in quite close symmetric shape, however in Figure 2 the probability densities 

of 2Z  based on the conditional approach is right skewed than the ones based on the kernel 

approach which ensure the results in Table 4 and the simulation results. 

 

 

Table (4) : The Kernel and conditional Upper limit (UL), Lower limit (LL) and length of the 

intervals of the pivotals 1Z  and 2Z  and the corresponding parameters   and   

respectively for the nominal level 95% . 

 

 

Parameters 

                     Kernel                  Conditional 

LL UL Length LL UL Lenth 

1Z  0.6401 1.2609 0.6209 0.6654 1.3841 0.7187 

  3.1313 6.1685 3.0373 2.8708 5.9713 3.1005 

2Z  0.4727 1.2901 0.8174 0.5988 1.7173 1.1175 

  0.3355 0.4119 0.0764 0.3161 0.4034 0.0873 
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6. CONCLUSION 

 

The kernel estimation technique constitutes a strong basis for statistical inference and it has a 

number of benefits relative to the usual conditional procedure. First, it is easy to be used and it 

doesn't need tedious work as the conditional inference. Second, it can perform quite well even 

when the number of bootstraps is extremely small up to 20 replications. Finally, it is uniquely 

determined on the basis of the information content in the pivotal quantities and thus we can 

considering it as an alternative and reliable technique for estimation especially for problems with 

unknown parameters for which no sufficient statistics exist. Thus, from the results of this paper the 

kernel inference strengthens traditional inference statements and allows construction of alternative 

stronger types of inferences than the conditional inference.  
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ABSTRACT 

 

Let a sample of size n is grouped to N intervals and 1,..., N   be a vector of frequencies of the 

intervals. The statistics of form    1 ... Nf f   is considered under assumption that N   

as n . Goodness of fit test based on this class of statistics testing hypothesis of a continuous 

distribution versus a family of sequence of alternatives converging to hypothesis is considered. 

The problem of asymptotic efficiencies within the family of Pitman’s and intermediate sequence 

of alternatives are studied. For the classical chi-square statistic the probability of large deviation 

result is presented. 

 

Keywords: Grouped method, asymptotic efficiency, chi-square statistic, likelihood ration test, 

Pitman efficiency, Intermediate efficiency, Bahadur efficiency, large deviation. 
 

 

1. INTRODUCTION 

 

The classical goodness-of-fit problem of statistical inference is to test whether a sample has 

come from a given population. Specifically, we consider the problem of testing the goodness of 

fit of a continuous distribution   to a set of  n observations grouped into  N  equal probability 

intervals. A large class of the tests based on statistics of the general form  

 

                                                
1

( )
N

f

N k

k

R f 


 ,                                                                  (1.1) 

 

where 1,..., N   are the numbers of observations in the intervals. In the sequel the statistics f

NR  is 

called f- statistics, a test based on f-statistics is called f- tests. Three most popular cases of f-

statistics are 2 2

1

N

N k

k

X 


  is called the chi-square statistic, 
1

ln
N

N k k

k

 


   is called the 
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likelihood ratio statistic,  
1

N

r m

m

r 


    is a number of intervals containing exactly r 

observations, here  { }A  is the indicator of the event  A. Particularly 0  is known empty boxes 

statistic ( see, for instance, Kolchin et al (1978)). 

 

The probability integral transformation ( )x F x  reduces the problem of testing the goodness of 

fit of a continuous distribution   to that of Uniform [0,1]. So we consider the problem of testing 

the null hypothesis 0H : ( ) ( ) 1p x x   , 0 1x  , versus the family of sequence of alternatives  

 

                              1 : ( ) 1 ( ) ( ),H p x d n l x                                        (1.2) 

 

where constant 0d  , ( )l x  is a function on  0,1  such that  

 

                           

1

0

( ) 0l x dx  ,  

1

2

0

( ) 1l x dx  , 

 

( ) 0n   will be chosen so that the power for a f-test of size   has a limit in ( ,1). The 

problem of testing 0H  against 1H  is called problem 0 1( , )H H .  

Holst (1972), Ivchenko and Medvedev (1978) and Gvanceladze and Chibisov (1979) have 

shown for similar to problem 0 1( , )H H  that for 1/ 2( )n n    the power of the f-tests tends to the 

significance level as n   whenever N  ; hence such of alternatives can not be detected 

by f-tests. In Mirakhmedov (1987), see also Quine and Robinson (1985), it was pointed out that 

if we let N   then a sequence of  alternatives that convergence to uniform must be in the 

form (1.2) with 2 1/ 4( ) ( / )n n N   ,  in order to keep the power bounded away from the 

significance level and unity, hence the f-tests do not discriminate alternatives (1.2) with  

 2 1/ 4( ) ( / )n o n N  . This is a poor in comparison with other tests based on empiric 

distribution function, for example the Kolmogorov-Smirnov and Cramer -von Mises tests, who 

can detect similar alternatives at a distance  1/ 2O n . On the other hand not always we need to 

consider the alternatives converging to hypothesis with the extreme rate of   1/ 2O n . Moreover, 

concerning to the choice of the number of groups in chi-square test there is a well-known result 

by Mann and Wald (1942) stating that the optimal number N   increase with  n  as  2/5N O n . 

Hence it is unnatural to keep fixed number of groups when number of observations goes to 

infinity.  

We are concerning with asymptotic results when N N n ( )  as n .This case 

intensively has been studied by many authors. We refer to Holst (1972), Morris (1975), 

Medvedev (1977), Borovkov (1978), Ivchenko and Medvedev (1978), Quine and Robinson 

(1984, 1985), Kallenberg (1985), Jammalamadaka and Tiwari (1985, 1987), Mirakhmedov 

(1985,1987), Jammalamadaka et al (1989). By Mirakhmedov (1990), Ivchenko and 

Mirakhmedov (1991, 1995) and Sirajdinov et al (1989) for f

NR   it is proved: the central limit 

theorem under mild condition together with Berry-Esseen bound, Edgeworth type asymptotic 
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expansion with exact formula for the first three terms, specified for statistics 2

NX ,  N  and r , 

and Cramer type large deviation result under Cramer condition  exp ( )E H f    ,  0H  , 

where   is the Poisson ( )  r.v. , /n n N   , 0   . We refer also to Ronzhin (1984) 

where under Cramer condition the Chernoff type large deviation result for f

NR   was proved. Note 

that the statistics N  and r  are satisfy Cramer condition whereas chi-square statistic 2

NX   do 

not. Nevertheless by Quine and Robinson (1985) asymptotic result for Chernoff type large 

deviation probabilities of 2

NX   and N   was obtained. These probabilistic results have been used 

to study asymptotic efficiencies (AE) of the f-tests. In detail corresponding results are as follows. 

There are two basic ways of comparison of tests. One of them is in principle based on 

asymptotic analysis of the power of the tests. A test having maximal power within a class of tests 

under consideration is called asymptotic most powerful (AMP) test. AMP test may be not 

unique. In such a case an asymptotic behavior, as n , of the difference in powers of two 

AMP tests is of interest; this situation gives rise to the concepts of second order efficient tests. 

The definition of the second order efficient test adapted to our problem is given below.            

Another method of comparison of two tests of the same level is based on comparison of the 

number of observations needed to get same asymptotic power, when number of observations 

increases. If we have two tests with corresponding numbers of observations 1n  and 2n , then the 

limit of ratio 2 1/n n   is called the asymptotic relative efficiency of test 1 w.r.t. test 2. To 

investigate AE of a test we consider that ratio where 1n  and 2n  corresponds to that test and the 

AMP test respectively. AE of a test depends on three parameters: the level n , the power n   and 

the alternative 1H , which may depend on  n. When sending  n  to infinity  three concepts are: 

Pitman approach when 0n   , 1 0H H  (in some sense) in such rate that ( ,1)n    ;  

Bahadur approach when 0n  , (0,1)n   , 1H  is fixed, i.e. does not approach the 

hypothesis; Kallenberg intermediate approach when 0n  , (0,1)n   , 1 0H H  but 

more slow than in Pitman case. Optimality of a test can be expressed by first order efficiency, 

which means that 2 1 1 1( , , ) / ( , , )n H n H     converges to 1, where the limit is taken according to 

the efficiency concept involved. The problem of finding of the limit of ratio 

2 1 1 1( , , ) / ( , , )n H n H     being very difficult problem as usually reduces to finding of the ratio 

of what is called slopes of the tests under consideration, see, for instance, Fraser (1957), Nikitin 

(1995), Inglot (1999). 

Let now  be the Poisson ( )n  r.v. with /n n N  ; iP , i , iVar  stands for the probability, 

expectation and variance under iH ; ,i NA  and 2

,i N  stands for the asymptotic value of f

i NR   and 

f

i NVar R  , 0,1i  , respectively. Put 

 

                           ( ) ( ) ( ) ( )ng f Ef         ,  1 cov( ( ), )f                           (1.3) 

                             2 2( ) ( ) ( ) 1 ( ),f Varg Varf corr f       . 

 

From Theorem 2 of Mirakhmedov (1990) it follows that if  
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3

3

( )
0

( )
N

E g

N f





  ,                                                                           (1.4) 

as n and N  , then 

 

                         
1

sup ( )f

N i N iN iN N
x

P R x A x O
n

 
 

       
 

,                               

(1.5) 

 

where ( )x is the standard normal distribution function.  

 

Remark 1.1. The statistics 2

NX   and N  satisfy the condition (1.4) if and only if nn  . But 

for the statistic r  (1.4) is valid under additionally conditions for r  and  . Namely, if 0n   

and  nn    then (1.4) satisfies for r  with 0 2r  ; if n  is far away from zero then (1.4) 

is still true for r , 0r  , if ln ln lnn N r N    . In what follows we assume that nn  . 

 

Asymptotical Most Powerful Test. It is known, see Holst (1972), Ivchenko and Mirakhmedov 

(1991, 1995), that under alternative (1.2) with ( ) 0n   
 

             0 ( )NA NEf  , 2 2

0 ( )N N f  , 2 2

1 0 (1 (1))N N o   ,                                            (1.6) 

              2 2

1 0( ) ( ) ( ) / ( ) ( ) ( , ) 1 (1)
2

def
n

N N N n

n
x f A f A f N f n f d o


       ,             (1.7) 

with  2( , ) ( ) , (2 1)n nf corr f          . 

Let ( )f  be the asymptotical power of the f- test of a size  . If (1.4) is satisfied then (1.5) 

and (1.7) imply   

               2 2( ) ( ) ( , )
2

n
n

n
f n f d u


   

 
    

 
, 1(1 )u   .                                 (1.8) 

 

Hence functional ( , )nf   plays the key rule in determining of the asymptotic quality of the f-

test. Its meaning is clarified by the following (see Lemma 1 by Ivchenko and  Mirakhmedov 

(1995)) 

 

                                    2

0( , ) , 1 (1)f

n N Nf corr R X o    .                                                  (1.9) 

 

Hence ( , ) 1nf   , and ( , ) 1nf    for any n  only for chi-square test. The equality (1.8) 

means that f-test does not detect alternatives (1.2) with  1/ 4( ) ( )nn o n   .  

Let in (1.2) 1/ 4( ) ( )nn n   . Then for the problem 0 1( , )H H  the chi-square test is AMP 

within class of f-tests for any n . Nevertheless if 0n   or n   then there exist other 
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AMP tests also, because in these cases may ( , ) 1nf   . For example, if 0n   and 

2 (0) 0f  , where operator ( ) ( 1) ( )f x f x f x    , then  

 

                      
3

2

2

(0)
( , ) 1

6 (0)

n
n n

f
f O

f


  


  


;   

 

if n    for the statistic N
  

1
( , ) 1 1 (1)

6
n

n

f o 


   .
 

 

Remark 1.2. Let 1( , ,..., )NM n p p be a multinomial distribution with parameters n , 0mp  , 

1 ... 1Np p   . Above stated goodness of fit problem can be reduced by grouping of 

observations to that of testing of hypothesis 1

mp N  , 1,...,m N , versus the sequence of 

alternatives  1 1 ( )m mp N d n  , 1,...,m N , where 
1

0
N

m

m

 , 2

1

1
1

N

m

mN 

 . Such goodness 

of fit problem have been studied by Ivchenko and Medvedev (1978), Ivchenko and 

Mirakhmedov (1991,1995); here the case when 0n  is of interest (it corresponds to so namely 

“small sample” situation), whereas for above stated problem  0 1,H H it is not of interest because 

the quality of f-tests goes dawn.  

 

Second Order Asymptotic Efficiency.  Future comparison of the AMP tests, when 0n   or 

n  , based on a notion of the second order efficiency. Set 2 / 2d u   , where   is a 

size of f-test and u  from (1.8), ( ; )f

n NR   stands for the power of the f-test of a size  . By 

Ivchenko and Mirakhmedov (1991) was shown the following asymptotic expansion of the power 
2( ; )n NX    of chi-square test    2 2( ; ) ( ; ) 1 (1)n N n NX X o       , where 

             
 2 2 2

2

1

exp / 2 1
( ; ) 2

2 2 22 3 2

n
n N

n

nd n
X S

n

  
  

 

   
       

  

,  if 0n  , 

                

               
 2 2

2
exp / 2

( ; ) 1
2 2

n N

d
X

N

 
 



  
  

 
,  if n  . 

 

Here 1( ) { } 0.5S x x   ,{ }x denotes a fractional part of the  x. The function 1( )S x  is well known 

in the theory of asymptotical expansion of the cumulative distribution function of lattice random 

variables. It is raised here because chi-square statistic 2

NX   is the lattice random variable with 

span equal to 2. 

 

Definition. The AMP f-test is called second order asymptotic efficient (SOAE) with respect to 

chi-square test, if its power has asymptotic expansion    ( , ) ( ; ) 1 (1)f

n N nR f o       , 

with ( ; ) 0n f    and  2( ; ) ( ; ) 1 (1)n n Nf X o     . 
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The conclusion of Ivchenko and Mirakhmedov (1991) is as follows. Let 0n  , then there exist 

SOAE f-tests only if  1/ 2( )nO n   , i.e.  3/ 4n O N . For example empty cells test based on 

0 is SOAE, but likelihood ratio test is not SOAE. If n  , then SOAE does not exist. 

 

Pitman Efficiency. Under certain regularity conditions (see, for example, Fraser (1957)), the 

efficacy of a test based on statistic, say V , is given  by 2 2( ) /V Ve V   . Here V  and 2

V   are the 

mean and variance of the limiting normal distribution under the sequence of alternatives when 

the test statistics has been normalized to have limiting standard normal distribution under the 

hypothesis. In such a situation, the Pitman’s asymptotic relative efficiency ( in sense of 

comparison of the sample sizes, see above) of one test with respect to another is the ratio of their 

efficacies. Because of (1.6) and (1.8) the alternatives (1.2) with 1/ 4( ) ( )nn n     are form altP -

the family of Pitman alternatives: f-test of a size ( ) 0n f    and ( , )nf   is far away from 

zero has the power (see (1.8))  1/ 2 2( ) ( ) 2 ( , ) ( ,1)n nf f d f u        . For the 

efficacy ( )e f of the f -test we have 2 1 4 4 2( ) ( ) 2 ( ) ( , )N n ne f x f d n n f     . Hence the Pitman 

asymptotic relative efficiency of f-test is determined by functional ( , )nf  ;within class of f-

tests the chi-square test is asymptotic most efficient (AME) in Pitman sense; the Pitman 

efficiency of f- tests goes down as number of intervals N increases for a given sample size n.  

These verdicts have been proved by Holst (1972), Ivchenko and Medvedev (1978), 

Mirakhmedov (1987) and Quine and Robinson (1985). 

 

Bahadur Efficiency. Another extreme family of alternatives is altB - Bahadur (as well as 

Hodges-Lehman) family of alternatives when alternatives do not approach the hypothesis, i.e.

( )n  is constant. The Bahadur’s AE of f-tests in the family altB  have been developed by 

Ronzhin (1984) who showed, for a certain subclass of f-tests, that whenever ( ) ( ) 1n f f   , 
1 log ( )nn f  converges to limit (which is called slope of the f-test to the alternative) of 

specifies the Bahadur AE of f-test. This limit is determined by the logarithmic rate deviations 

probabilities (for deviation of order ( )O N ) under H0, which require restrictive Cramer’s 

condition (see (2.1) below) on the test statistics. In particular, this condition excludes the chi-

square statistic. A comparative analysis of chi-square test’s Bahadur efficiency relative to the 

likelihood ratio test was carried out by Quine and Robinson (1985). They showed that likelihood 

ratio test is much more Bahadur efficient than that chi-square test, in contrast to their relative 

Pitman efficiency. In a similar setup, the AE of the chi-square and likelihood ratio tests when 

 N o n were studied by Kallenberg (1985).  

 

Intermediate Efficiency. The situation when  ( )n  0  but slower than that in the altP  give rise 

to intermediate family of sequence of alternatives of three types: allK -family of alternatives (1.2) 

with ( ) 0n  , 1/ 4( )( )nn n   ; 1/ 6K - subfamily of allK  with  2 1/6( ) ( )nn o n    if 1n  , 

and  1/6( )n o n  if 1n   ; 
log

K - subfamily of allK  with  1/ 4 1/ 4( ) ) lognn O n N   . 

Actually such division of family of intermediate alternatives becomes from probability of large 
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deviations results presented below in Section 3 and because of relation (1.7). These families of 

alternatives are adapted (to the problem considering in the present paper) variant of that 

introduced by Kallenberg (1983).  

Following to the logic of the Bahadur’s approach, intermediate AE (between Pitman and 

Bahadur settings) of f-tests for the family of intermediate alternatives can be measured by the 

logarithmic rate of decrease of the test size when the power is fixed. Therefore by Ivchenko and  

Mirakhmedov (1995) as a measure of the performance of f-test was considered the asymptotic 

value of a slope   

 

                                             0 1( ) log ( )f f

n N N Ne R P R NA f    .                                        (1.10) 

 

The test having largest asymptotic value of ( )f

n Ne R  is called asymptotic most intermediate 

efficient test. We distinguish three types of intermediate efficiencies: weak intermediate, 

intermediate and strong intermediate for families
log

K , 1/ 6K  and allK  respectively. Asymptotic 

relative efficiency of one test to another is defined as ratio of its asymptotic slopes. For Pitman’s 

alternatives this is equal to the Pitman’s asymptotic relative efficiency, whereas for intermediate 

alternatives it is related to the intermediate relative asymptotic efficiency in weak sense 

introduced by Inglot (1999). Ivchenko and Mirakhmedov (1995) has extended above said the 

Pitman’s and the Bahadur’s efficiencies properties of chi-square test: chi-square test is still 

optimal ( in sense of asymptotic value of ( )f

n Ne R ) within class of f-tests in the family 
log

K  but 

in the family allK  except 1/ 6K  it is much inferior to those statistics satisfying the Cramer 

condition, particularly to likelihood ratio test.  

As it follows from above said the chi-square test is AMP, SOAE, and AME in the Pitman’s 

and the weak intermediate senses, but it losses optimality property in terms of the Bahadur’s and 

the strong intermediate efficiencies senses. For the f-tests satisfying Cramer condition AE for all 

range of alternatives (1.2), i.e. for family of alternatives altP , allK  and altB  in the situation when 

  is far away from zero and infinity have been studied also. AE of the chi-square test in the 

family of alternatives 1/ 6K  was open problem. 

Theorem 2.1 of Section 2 covers that existing gap in study of AE of the chi-square test; also 

it extends result of Ivchenko and Mirakhmedov (1995) on AE of chi-square test within family of 

strong intermediate alternatives for the cases 0n   and n  . In Section 3 the probability 

of large deviation result for chi-square statistic, likely to be own interest, is presented. The 

auxiliary assertions are collected in Section Appendix. 

 

2. ASYMPTOTIC EFFICIENCY 

 

We assume n  . Also we continue to use denotes (1.3), (1.6), (1.7) and (1.10).  

 

Theorem 2.1.  

1. If  0 10 nc c     and 

 

                                  exp{ ( )}H f   ,                                                                          (2.1) 
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for some 0H  , then in the family of alternatives allK  
4

2

4

( )
( , )(1 (1))

( ) 4

f

n N
n

n

e R d
f o

n n



 
 

  . 

2. In the family of alternatives 1/ 6K   
 

                                         

2 4

4

( )
(1 (1))

( ) 4

n N

n

e X d
o

n n



 
  . 

 

3. In the family of alternatives allK   if                                          

 

                                    3 1/ 2 1( )( ) lognn n N    ,                                                             (2.2) 
 

then 
2

4

( )
(1).

( )

n N

n

e X
o

n n



 
  

 

First assertion of Theorem 2.1 is case (ii) of Theorem 3 of Ivchenko and Mirakhmedov (1995). 

Theorem 2.1 together with results of Quine and Robinson (1985) implies that chi-square test is 

optimal within class of f-tests for the families of Pitman and intermediate sequence of 

alternatives but it is much inferior to those statistics satisfying the Cramer condition (particularly 

to likelihood ratio test and r , 0r  , tests) for families of strong intermediate alternatives under 

condition (2.2) and Bahadur family of alternatives. It remains a gap in the study of the 

intermediate efficiency of the chi-square test in the family allK  with              

 

                   2 1/6 1/6 1/3

2 3( ) ( ) ( ) logn nc n n c n N       for  1n  ,  

and 

                   1/6 1/6 1/3

2 3( ) ( ) lognc n n c n N       for  1n  .  

 

Remark 2.1. An alternative approach to testing of uniformity [0,1] is to construct tests based on 

spacings. Let 1 2 ,...n n n nX X X    be the order statistics of the sample 1 2, ,..., nX X X , 

( )

, , ( 1) ,

s

m n ms n m s nW X X   , 1,2,...,m N , 
( )

1, ,1s

N n N s nW X    ,  with notation , 0o nX   and 1, 1n nX   , 

be their s-spacings; [( 1) / ]N n s   , NN   if ( 1) /n s  is an integer and 1 NN otherwise; 
( ) ( )

1, ,( ,..., )s s

n N nW W W . The step of the spacings  s may increase together with n, but  ( )s o n .  

The order statistics 0 1 , 1,, ,..., ,n n n n n nX X X X   divide interval [0,1] to 1s   subintervals 

(groups), that is we again, actually, deal with method of grouping data. In contrast to above 

considered method here the ends of intervals are random and we are using, for a statistical 

procedure, the length of intervals instead of frequencies of intervals. Most common among tests 

based on spacings are tests based on statistics of the form  ( )

,

1

( ) ( 1)
N

f s

N m n

m

R W f n W


  .              
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AE properties here alike to those of f-tests (the step of spacings  s  plays the role of  ). For 

example: such tests can detect alternatives (1.2) with ( ) ( )n ns   , (0,1/ 4]  , AMP test for the 

alternatives (1.2) with 1/ 4( ) ( )n ns    is the Greenwood’s test based on statistic  

 

                                   
2

2 ( )

,

1

( 1)
N

s

N k n

k

G n W


  .  

 

While considerable attention has been devoted in literature to type ( )f

NR W statistics, we are not in 

position to give here all the details of existing results. Reader can find detailed information, 

applications, and references, for instance, in papers by Pyke (1965), Rao and Sethuraman (1975), 

Jammalamadaka et al (1989), Zhou and Jammalamadaka (1989), Jammalamadaka and Goria 

(2004), Mirakhmedov (2005, 2006) and Mirakhmedov and Naem (2008). We wish only refer to 

Jammalamadaka and Tiwari (1985, 1987) and Jammalamadaka et al (1989) where the Pitman’s 

ARE of chi-square test  and Greenwood test with   ns    were studied. They shown that if 

s    then these two tests have same Pitman efficiency, but for fixed  s  (that corresponds to 

the case 1 n c   ) spacings tests are preferable to comparable chi-square procedure. From 

Theorem 2.1 and results of Mirakhmedov (2009) it follows that the same verdicts are still true 

for intermediate asymptotic efficiency of chi-square test and spacings based tests.  

 

Proof of Theorem 2.1. Part 1 was proved by Ivchenko and Mirakhmedov (1995). To prove of 

Part 2  we note that     

                                     0( ) log ( ) ( ) ( )f f

n N N Ne R P R x f f N Nf       

                               2 2

0

( )
log ( ) ( , ) 1 (1)

2( )

f

N n
n

R Nf n
P n f d o

f N

 
  



  
    

  
.  

since (1.10). Therefore, Part 2 follows from Theorem 3.1 of Sec.3, the facts that ( , ) 1f     for 

the chi-square statistic and that  1 2log ( ) 2 (1 (1))x x o     , as  x .  

 

Proof of Part 3.  We use similar to Quine and Robinson (1985) approach. Let ( , )B k p  

means that a  

r.v.   has the Binomial distribution with parameters  n  and  p , 0 1p  ; and  

2 2( ) ( ) 1n n nn d n n        
 

, where  a  is an integer part of a. We have  

   2 2

1 ( 1) ( ) 2N N N n N nP X NA P X n x f n              

    2 2 2

1

( ) ( ) 1 (1)
N

m n n n

m

P d n n o    


 
     

 
  

   2

1 1

2

( ) 0 ( ) ( )
N

m n n

m

P v n P v n    


 
      

 
  

   
1

2

1

1

ˆ( ) 0 ( )
N

m n n

m

P P v n   




 
     

 
 ,                                                                       (2.3) 
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where  1ˆ ( ),( 1)m Bi n v n N   , because of fact that the conditional distribution of 

multinomial vector  1,..., N   given one component is again multinomial, but N replaced by 

1N  . Put ( ( )) /( 1)n n v n N    . It easy to see that   1 1/ 2( )) / ( ) 1 (1)v n n N d n N o     and 

  1 1/ 21 ( )n n O N d n N      .  Simple algebra shows that    
2 2

1 1

ˆ ˆ ˆ
N N

m n m n

m m

   
 

    . 

Using this fact we have 

 
1

2

1

ˆ( ) 0
N

m n n

m

P   




 
   

 


1
2

1

ˆ ˆ( ) ( 1)
N

m n n

m

P N  




 
    

 
  

   
1

2

1

ˆ ˆ ˆ( ) ( )
N

m n n n

m

P v n   




 
     

 
  

 
1

2

1

2

ˆ ˆ ˆ( )

( ) (1) 0
2( ( )) /( 1)

N

m n n

mP d n o c
n v n N

  







 
   

     
  

  


,                                                           (2.4) 

because of  ( ( )) 1 (1)n nn v n n o     , and  hence asymptotic normality of chi-square 

statistic  
1

2

1

ˆ ˆ( )
N

m n

m

 




  is valid, see above Remark 1.1. 

Set    ( , ) log / (1 )log (1 ) /(1 )g x p x x p x x p     , (0,1)x  and (0,1)p . The following 

Lemma 2.1 is presented by Quine and Robinson (1985). 

 

Lemma 2.1. If   ,Bi k p  then for integer kx  

                     
1/ 2

0.8 2 (1 ) exp ( , )P kx kx x kg x p 


    . 

Note that ).,(~ 1
1

NnB  Therefore due to Lemma 2.1 we have 

              1 ( )P v n   

           
11/ 2

1 1 1

1

1 ( )
( ) 1 ( ) exp ( ) log( ( )) (1 ( )) log

1
n

v n n
c v n v n n v n v n n n v n

N



  



 
         

 

           
1/ 2 1( ) exp ( ) log( ( ))nc v n v n v n
   ,  

since 1( ) /v n n N  .  Hence 

 

                          
  1

1

4 4

log ( ) log ( ) ( ) log( ( ))

( ) ( )

n

n n

P v n v n v n v n
c

n n n n

 

   

 
      

                        
4 4 3

( ) ( ) 1 1
log log

( ) ( ) ( )

n n

n n n

n n v n
c c N

n n n n n n

  

     

 
   

  

= (1)o ,         (2.5) 

 

because of (2.2). The Part 3 follows from (2.3), (2.4) and (2.5). 
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4. LARGE DEVIATION 

 

We recall denotes from Sec. 2:   is Poisson ( n ) r.v., /n n N   ,  1 cov ( ),n f    ,    

 

       ( ) ( ) ( ) ( )ng f Ef         ,   2 2( ) ( ) ( ) 1 ( ),f Varg Varf corr f       . 

 

The following Theorem 3.1 is likely of own interest giving an asymptotic for the large deviation 

probability of chi-square statistic. 

 

Theorem 3.1. If  1n   then for all 0x  and  1/6x o N , if 1n   then for all 0x   and 

 3 1/6( )nx o n  one has     2 2 ( 1) 1 ( ) 1 (1)N n nP X x n n x o       . 

 

Proof. Let 1 2, ,...  be independent copies of the r.v.  . Also let ( )
k
kCc be a cummulant of the k 

th order of a r.v.  , 

                   
1

N

N m n

m

S  


  ,  
22

1,

1

N

N m n

m

X  


  ,  
22

1,

1

N

N m n

m

X  


  .  

 

Lemma 3.1. For any fixed 3k   and enough large n,   2 2

1, 1,( ) ( ) 1 1N Nk k
X X o k kCc Cc . 

 

Proof. Let fixed 3k  . It is well known that 1 1(( ,..., )) (( ,..., ) / 0)N N NS    L L , where 

( )XL  denotes the distribution of the random vector X . Hence 

 

                                  2 2

1, 1,( ) ( ) / 0k k

N N NE X E X S  .                                                         (3.1) 

On the other hand     2 2

1, 1,( ) ( ) /N Ni S i Sk k

N N NE X e E e E X S
 

 . Integrating w.r.t.    both side of 

this equality over interval [ , ]  , and taking into account (3.1) we have  

                                     2 2

1, 1, exp

n
k k

N
N n N

n

S
E X d E X i d

n





 


 
  

 
 ,                                  

where  

                         
1 1 !

2 { 0}
2

n

n N n

n e
d nP S

nn






   . 

Hence, putting m m n     we have 

 

                   1

1

222

1,

1

... expl

l

nk
k

kk N
N n k l j j

l n

S
E X d E i d

n





   
 

  
       

  
  ,                             (3.2) 
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where k
  is the summation over all l-tuples 1( ,..., )lk k  with positive integer components such 

that 1 ... lk k k    ; l
  is the summation over all l-tuples 1( ,..., )lj j  with components not equal 

of each others and such that 1,2,...,mj N ;  1,2,...,m l .  

Putting ,

1
i

l

N l j

i

S 


  we have 

    1

1

22
... expl

l

n

kk N
j j

n

S
E i d

n





   


  
    

  
  

1

1

2
, ,22

... exp exp exp 1
2

l

l

n

N l N N lkk

j j

n

S S S l
E i E i d

Nn n






    



          
              

         
  

1

1

2
,22

exp 1 ... exp 1
2

l

l

n

N lkk

j j

n

Sl
E i d

N n






   



      
           

        
  

1

1

2
22

1 2 3... exp 1 .
2

l

l

n def
kk

j j

n

l
E d J J J

N






  



  
           

  
                                                (3.3) 

 

We have  

 

                 2 2

2

2
exp exp 2 sin exp

2

mi
E

nn n

  
 



     
        

   
,                                   (3.4) 

 

since 
2 2 2sin / 2 /u u  , u  . Put 1/ 2 1/ 23 ( )n nN n    , then 

33/ 2 1/m m nnVar E    . 

Taking into account this inequality and using Assertion 4 and (3.4) by some algebra we have  
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1

1

2
,22

1

(6 )

... exp exp 1
2

l

l

n

N N lkk

j j

S S l
J E E i d

Nn



   

 

      
            

    
  

1

2
,
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exp exp 1
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Lemma 3.2. For any integer 2s   one has  
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(3.7) 

Proof. We have   exp 1mi i
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     . Applying here the Bruno’s formula we find  
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It is obvious that 
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Apply (3.5), (3.8) and (3.9) in (3.3) to get 
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Using Stirling’s formula it is easy to see that    )(12 12/1 
 nOdn  . Inserting this and (3.10) 

into relation (3.2) we have 
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Lemma 3.1 follows from Assertion 3, see Appendix, and (3.11), because 
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Let 1n  . Due to Lemma 3.2 and Stirling’s formula we have: for 3k   
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because of 2 22m n nVar    . Therefore by the Assertion 1 with 2 2
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because as 2

1,NX  is a sum of  i.i.d. r.v.’s. Apply this and Lemma 2.1 to get: for any fixed 

3,4,...k   and enough large n  

 

                   
2

222 2 10 1
1, 2

! 2 2
2

k

N N n nk k

n

Var
X X k n


 





 k kCc Cc     
22 12 2! 2

k

n Nk VarX


 , 

 

Thus r.v.  2

NX   satisfy the Statulevicius condition ( )S  with 1   and 122 n  , see Appendix. 

Theorem 2.3 follows from the Assertion 3 with 2

NX  , 2 nn   and 122 n  . 

Let 1n   . Then 
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So  r.v. 2

NX  satisfy the Statulevicius condition ( )S  with 1  and 12 12 n
  . Theorem 3.1 

follows from the Assertion 3 with 2

NX  ,  2 nn   and  12 12 n
  . 

 

APPENDIX 

 

Let  be a r.v. with 0E   , 2 0Var    , ( )
k
kCc  and ( )k   be, respectively, cumulant and 

moment of  k th order of the r.v.  . The following two conditions plays essential role in the 

theory of large deviations, see Saulis and Statulevicius (1991). 

 

Bernstein’s condition ( )B : there exists the constants 0   and 0B   such that  

 

                                                
1 2 2( ) ( !) k

k k B    , for all k =3,4,…. 

 

Statulevicius condition ( )S :  there exists the constants 0   and 0   such that  
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                                               1 ( 2) 2( ) ( !) k

k
k    kCc , for all k =3,4,…. 

Assertion 1 (Saulis &Statulevicius, 1991). If  satisfy condition ( )B  then it also satisfy 

condition ( )S  with 2B  . 

 

Assertion 2. Suppose that r.v.  depending on a parameter   satisfy condition 1( )S (i.e. 1  ). 

Then    
3

( ) 1 1P x x c x  
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1/3
1

0
12

x
 

   
 

, where 1  . 

 

Assertion 2 is Lemma 2.3 with 1   by Saulis &Statulevicius (1991). 

 

Remark.  The condition ( )S  presented by Saulis & Statulevicius (1991) has form  

1 ( 2)( / ) ( !) k

k
k      kCc , in such variant of the condition ( )S everywhere above it should be 

written /  instead of  . It seems that presented here slightly different formulation of the 

condition ( )S is more convenient; for example, Assertion 1 now is easy to understand because of 

the following well known relation (see, for instance Saulis and Statulevicius, 1991, p.15). 

 

Assertion 3.  One has 
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ABSTRACT 

 

Poverty eradication is the first of the Millennium developmental goals. Reducing poverty is a 

primary goal of policy makers. While poverty is not a gender concern, studies suggest that 

women, along with their children, tend to be more vulnerable to poverty than men and among 

children in poor households, girls are generally more vulnerable than boys. The study aims to 

identify the characteristics of household headed by women as well as their family members, 

especially illiteracy rates among children and child labor prevalence in these households. The 

study shows that, women heading households are older than men and are less likely to participate 

in the labor force. Most women heading households are widows and widowed women heading 

households with children are the most disadvantaged in terms of the incidence, depth and 

severity of poverty. Most women heading households are illiterate and children in these 

households are more likely to be illiterate and more likely to work at young ages. 

 

1. INTRODUCTION 

 

Poverty eradication is the first of the Millennium developmental goals. Reducing poverty is a 

primary goal of policy makers. In Egypt poverty is not gender concern, while studies suggest that 

women, along with their children tend to be more vulnerable to poverty than men.  In this 

context, the continuous and increasing poverty burden on women, which is stated in different 

international and Arabic documents, is one of the fundamental issues of the world’s concern. 

This situation has led to: 

 Construct and implement national strategies to eradicate poverty; 

 Ensure that national strategies should focus more on women; 

 Establish institutions and national associations directed mainly to support women head of 

households. 

 Assist women's small Projects and Loans. 

 

According to the 2006 Census data, the number of households headed by women in Egypt is 

about 2.3 million, which constitutes 14% of the total households. The situation might be due to 

husband absence because of death, divorce, migration multiple marriage or many other reasons 

like being unmarried. Also it is important to note that the percentage of households headed by 

women is low due to the traditions and culture prevailing in the Egyptian society especially in 

rural areas and upper Egypt, where they consider men to be the head of household even in case 

of being children.  While statistics in Egypt suggest that poverty is not particularly feminized, it 

is important to keep in mind that among the poor women headed households are particularly 

vulnerable and among children in poor households girls are more vulnerable than boys.  

mailto:Amal_Fouad59@yahoo.com
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2. OBJECTIVES OF THE STUDY 

 

The objectives of this study are as follows:  

 Study the characteristics of household headed by women such as family size, household 

head age, place of residence, educational level, employment status of household head and 

members, marital status of household head and economic level of the household.  

 Illiteracy rates among children in households headed by women. 

 Child labor (6-17 year) prevalence in households headed by women. 

 Highlight some recommendations with the goal of formulating policies to reduce poverty 

among women. 

 

3. SOCIO-ECONOMIC CHARACTERISTICS OF HOUSEHOLD HEADS 

 

This section of the study aims at examining socio-economic characteristics of women-headed 

households and men-headed households. Census data of 2006 showed that there were 14 % of 

total household headed by women (6.3 in urban and 7.6 % in rural). This percentage might not 

reflect the actual situation because of the traditions that household head should be a man even 

though he is a child and the actual person responsible for the household is a woman. That is why 

it is important to study socio-economic and demographic characteristics of such households. 

Table 1 displays the distribution of household heads by gender, place of residence, age, marital, 

educational, employment status according to 2006 census data (see also Figure 1). 

 

3.1 Age 

 

A review of related literature indicates that women heads of households are more likely to be of 

old age, widowed, divorced, separated, or with ill husband. This observation was valid according 

to 2006 census data, where the highest percentage, about 36% of women heads of households, 

were in age group (60 years or over) while the highest percent (41%) of men heads of 

households were in the age group (30-44 years). The same pattern was observed in both urban 

and rural. The data also show higher percentage (12.2%) of young women-headed households 

(15-29 year) in rural areas compared to urban areas (3.9%). 

 

3.2 Marital Status 

 

Previous Studies indicated that the majority of women heads of households are widowed while 

most of men heads of households are married. This observation is valid according to the 2006 

census data, where being a widow is the main reason for this phenomenon. Figure 2 indicated 

that widowed women constitute about 74% of women headed households, while most of men 

heads of households (94.2%) are married and there was no significant difference between urban 

and rural in this pattern.  

The data also showed that 25% of women heads of households in rural areas were married 

which might be due to illness, disability, unemployment or separation of their husbands and in 

all cases women were totally responsible for the whole family. 
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Urban Areas 

 
Rural Areas 

Figure 1. The distribution of household heads by gender, age and place of residence. 

 

 

3.3 Educational Status 

 

Household head's educational status is one of the main factors affecting socio-economic 

characteristics of all household members. Data in Figure 3 indicated that in general, educational 

status of men heads of household is better than that of women heads of households. More than 

two thirds of women headed households (69%) in total Egypt were illiterate compared to 34.2% 

of men. About 13% of women headed households have intermediate and less than university 

compared to 30% of men. 

The same pattern was observed in both urban and rural areas, where illiterate women heads 

of households represent 56% and 80% in urban and rural areas, respectively, compared to 24% 

and 43% of men heads of households in urban and rural areas, respectively. Figure 3 also shows 

that about one third of men heads of households in urban have intermediate and less than 

university education compared to 16.5% of women heads of households. 
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Table 1. Percentage of household heads by gender, demographic, socio- economic characteristics, wealth index, 2006 

Characteristics Urban Rural Total 

Men Women Men Women Men Women 

Age 

15-29 11.2 3.9 16 12.2 13.8 8.4 

30-44 39.6 17.2 41.5 22.7 40.7 20.2 

45-59 32.6 39.4 28.7 32.3 30.5 35.6 

60+ 16.6 29.5 13.8 32.8 15.1 35.9 

Total 6744893 1099550 8146701 1296575 14891594 2396125 

Marital status 

Never married 3.5 3.9 2.3 2.3 2.9 3.0 

Contracted 0.2 0.1 0.1 0.1 0.1 0.1 

Married 92.6 9.7 95.5 25.0 94.2 18.0 

Divorced 0.6 6.5 0.2 4.0 0.4 5.2 

Widowed 3.1 79.8 1.7 68.6 2.4 73.3 

Total 6745189 1099663 8194681 1296766 14939870 2396429 

Educational Status 

Illiterate 23.7 55.8 42.9 80.2 34.2 69.0 

Read and write 10.2 9.7 14.4 5.5 12.5 7.5 

Primary 4.8 4.4 3.7 1.6 4.2 2.9 

Preparatory 5.7 3.7 4.1 1.5 4.8 2.5 

Intermediate & 

less than Univ. 
32.7 16.5 27.5 9.5 29.8 12.7 

University+ 22.9 9.9 7.3 1.6 14.4 5.4 

Total 6745189 1099663 8147681 1296766 14892870 2396429 

       

Employment status       

Wage earning 82.7 92.6 91.8 87.6 87.9 90.4 

Employer 7.9 3.4 2.4 3.1 4.8 2.3 

Self-employed 8 2.2 4.6 5.5 6.0 3.6 

Unpaid family 

workers  
0.1 0.1 0.1 1.9 0.1 0.9 

Previously worked 

unemployed 
0.7 0.6 0.3 0.2 0.4 0.4 

Newly employed 0.6 1.2 0.8 1.8 0.7 1..5 

Total 5473794 190546 7177272 147513 12651066 338059 

Participation Rate 81.2 17.3 88.1 11.4 85 14.2 

Wealth (Index)        

Lowest 9.6 13.9 28.2 38.8 20 27.4 

Second 11.0 11.9 26.3 25.2 19.3 19.1 

Middle 19.7 21.7 20.1 17.2 19.9 19.3 

Fourth 27.1 26.2 14.7 11.5 20.3 18.3 

Highest 32.5 26.3 10.8 7.3 20.6 16 

Total 6745188 1099663 8147681 1296766 14892869 2396429 
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3.4 Employment Status 

 

Previous studies showed a significant relationship between household head and household 

economic status. Figure 4 indicates that the highest percent of household heads, men or women, 

were wage earning workers with higher percent (90%) among women than among men (88%). It 

also indicates that in urban areas percentage of women heads of households who are wage-

earning were higher (93%) than that of men (83%). A lower percentage (88%) of women heads 

of households who are wage-earning in rural areas relative to men (92%) was reported. The 

percentage of women's unpaid family workers constituted the lowest in urban, rural as well as 

total Egypt. Data also showed that women heads of households have low level of participation in 

the labor force in the nation as well as in urban and rural areas, where women participation 

constitutes one fourth of that of men, whereas they constitute one eighth of men participation in 

rural areas which might be due to the fact that women heads of households were of higher ages. 

 

3.5 Wealth Index 

 

Wealth Index is a tool used to measure the economic level of households. Where this index was 

constructed based on household proprieties and housing conditions. Wealth index was divided 

into five levels each constitutes 20%. The Lowest level represents the poorest households, the 

Second represents the poor ones, the third represents the intermediate, and the fourth level 

represents the rich. The fifth one represents the richest households.  Figure 5 shows significant 

differences between the economic level of households headed by women and those headed by 

men where about 27.4% of households headed by women were among poorest group which 

indicated that women headed households were poorer than men heads of households. Rural areas 

showed higher percentage of poorest women (39%) and men (28.2%) household heads. The 

percentage of women and men in the second level (poor) is higher in rural (25.2% for women 

and 26.3% for men household heads) than in urban (12% and 11% for the two groups 

respectively). Data also showed higher percentage of urban men household heads in the richest 

group (about 33% relative to that of women household heads 26.3%).  

 

3.6 Region of Residence 

 

Many statistical studies showed that poverty is not specifically related to women, but we should 

note that households headed by women are poor and women members of these households are 

more exposed to poverty than male members. Table 2 gives the distribution of the percentage of 

household heads by gender, wealth index and region of residence. The data also show that higher 

percentage of households headed by men that were reported among the poorest group in rural 

lower and upper Egypt (28.1 and 48.3 for the two groups respectively) compared to urban 

governorates and urban Lower and upper Egypt (9.3%, 3.4% and 8.3%, respectively.  They also 

indicate that the percentage of households headed by women that is reported among the poorest 

group in rural Upper Egypt constituted 52% followed by those of rural Lower Egypt (24%). The 

data show the increase of the percentage of households headed by men that is reported among the 

most rich and rich group in all regions compared to that of women except for urban governorates 

(27% and 32% for men compared to 32% and 37% for women. 
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Urban Areas 

 

 
Rural Areas 

Figure 2. The distribution of household heads by gender, marital status and place of residence, 

2006. 

 

 

4. DEMOGRAPHIC CHARACTERISTICS OF HOUSEHOLD HEADS 

 

4.1 Average Household Size 

 

Table 3 shows the average household size according to gender and wealth index by place of 

residence in 2006. Note that there is no significant difference between the wealth index (the 

economic level of household), size and household composition. Note also that the average size of 

the households headed by women in urban areas is about three persons, compared to those 

headed by men, which is about four persons. Concerning rural area, the size of households 

headed by women is about three persons compared to about five persons in the households 

headed by men, mainly in the highest economic level. It is also noticed that when the household 

size increases the economic level increases.  This might be because of the number of working 

persons in the household.  
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Urban Areas 

 

 
Rural Areas 

Figure 3. The distribution of household heads by gender, educational status and place of 

residence, 2006. 

 

 

The data in Table 3 give the average number of children (less than 14 years old) in the 

households headed by males and females in urban and rural areas for different categories of 

wealth indicators. Also, Table 3 shows that adult persons aged from (14-64) in households 

headed by women in urban areas reached two persons mainly in the richest households. There is 

no difference with respect to economic level and number of adults in household in the 

households headed by men.  It is noticed that the average number of adults is about three 

persons.  The same pattern appears in rural areas. Concerning number of ageing persons whether 

in households headed by men or women in urban areas is less than those in rural areas.  This 

might be explained by the type of family, where extended families are prevailed in rural 

communities compared to urban areas regardless of the economic level of the household. 
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Urban Areas 

 

 
Rural Areas 

Figure 4. The distribution of household heads by gender, employment status and place of 

residence, 2006. 

 

4.2 Household Structure 

 

Household structure affects income distribution among household members and consequently 

affects the welfare of those members. Often, dependency ratio in poor households is higher than 

in rich households and in rural areas higher than the level in urban areas. Poor household feel the 

necessity to have more children as they are considered an additional source for household 

income. Table 4 shows the distribution of household heads by household structure and place of 

residence.  It indicates that households headed by women alone without children are higher than 

that headed by men. Also, the highest percentage of women headed households with one to three 

children was more observed among widowed women in both urban and rural areas. The 

percentage is 42.9% in urban areas as compared to 32.1% in rural areas, and the percentage of 

widowed women without children in urban areas is 28.9% and in rural areas is 27.3%. The 

percentage of households headed by widowed women with more than three children in rural 

areas is 9.2% compared to 8.1% in urban areas. Concerning the households headed by men, the 

percentage of married men who have from one to three children reached (62.5%) and (16.7%) 
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among married men who have more than (3) children in urban areas.  The same pattern was 

revealed in rural areas. 

 

 
Urban Areas 

 

 
Rural Areas 

Figure 5. Distribution of household heads by gender, wealth index and place of residence, 2006. 

 

 

5. THE RELATIONSHIP BETWEEN HOUSEHOLD ECONOMIC LEVEL AND 
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education.  Basic education is compulsory (primary and preparatory stage), and tuition is free.  

The enrolment rate of girls is lower than that of boys.  According to the Ministry of Education's 

data, the enrolment rate reached 94.3% and 96.5% among girls and boys respectively in 

2007/2008. 

Although there is a remarkable improvement in the field of education, there are a lot of 

factors that contributes in the reduction of woman benefit from these efforts. Also there are a lot 

of factors related to the basic infrastructure of the educational process as the location of the 

schools and the quality of the educational buildings, also the availability of the transportation, 

besides some characteristics of the household such as income and the prejudiced view against the 

education of women. The poor girls especially in the rural areas and in Upper Egypt fail to the 
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other boys and girls standard. From what is mentioned previously, it appears the importance of 

the studying the relation between the educational level of household members and the 

educational level of household head. 

 

Table 2. The distribution of household heads by gender, region of residence and wealth index, 

2006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 The Educational Status of the head of Household Chief and the Standard of Children's 

Educational level 

 

Table 5 shows the distribution of the percentage of household heads according to gender, place 

of residence, and educational level of household heads and household members in 2006.  The 

data indicate that there is a direct relationship between the educational status of household heads 

and the educational status of the household members especially in urban areas regardless of the 

gender of the household head. 

About 39% of the men household heads who are university graduates or higher in urban 

areas, their household members have acquired the same educational level. While this percentage 

among household headed by women reached about 35%. On the other hand whenever the 

educational level of the household heads decreased, the possibility of the household members 

being illiterate increased. Data showed that 41% of illiterate men household heads in urban areas, 

are associated with illiterate household members, and this rate decreased among household 

headed by women in urban areas. 

  

Wealth 

Index 

Urban 

Governorates 

Urban 

Lower 

Rural 

Lower 

Urban 

upper 

Rural 

upper 

Men 

Lowest 9.3 3.4 28.1 8.3 48.3 

Second 8.9 5.2 37.7 10.6 36.1 

Middle 19.4 12.1 37 12.2 17.9 

Fourth 27.1 18.7 31.2 13.7 8.1 

Highest 32 23.7 23.9 14.7 4.4 

Total 19.5 12.8 31.5 11.9 32.7 

Women 

Lowest 9.7 4 24 9 51.9 

Second 10.2 6.2 33.1 11.6 38 

Middle 23 15.1 32.6 12.8 15.6 

Fourth 31.9 20.2 27.5 13.4 6.4 

Highest 37 23.5 21 14.3 3.7 

Total 20.8 12.6 27.5 11.9 26.2 
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Table 3. Average size of households by the head of the household, wealth indictor and place of 

residence in 2006. 

Rural Urban Wealth 

index- T F M T F M 

Average size of households 

7.4 5.8 7.8 6.: 5.8 7 Lowest  

7.7 6.4 7.9 7 5.: 7.5 Second  

7.8 6.4 7.: 6.< 5.: 7.4 Middle  

7.8 6.5 7.9 6.< 5.; 7.4 Fourth  

7.9 6.8 7.; 7 5.< 7.5 Highest  

7.7 5.< 7.9 6.< 5.: 7.4 Total 

Average number of children 

4.8 7.: 4.9 4.4 7.7 4.6 Lowest  

4.8 7.< 4.9 4.5 7.8 4.7 Second  

4.8 7.< 4.9 4.4 7.7 4.6 Middle  

4.8 7.< 4.8 4.4 7.7 4.5 Fourth  

4.8 4.4 4.8 4.4 7.8 4.5 Highest  

4.8 7.; 4.9 4.4 7.8 4.5 Total 

Average number of adults 

5.7 4.8 5.: 5.7 4.: 5.9 Lowest  

5.: 5 5.< 5.9 4.< 5.: Second  

5.< 5 6 5.9 5 5.: Middle  

5.< 5.4 6 5.: 5.4 5.; Fourth  

6 5.6 6.4 5.; 5.5 5.< Highest  

5.: 4.; 5.< 5.: 5 5.; Total 

 Average number of aging  

7.5 7.6 7.5 7.5 7.6 7.4 Lowest 

7.5 5 4 7.5 7.6 7.4 Second 

7.4 5 4 7.5 7.6 7.4 Middle 

7.4 5 4 7.5 7.6 7.4 Fourth 

7.4 5 4 7.4 7.5 7.4 Highest 

7.5 6 4 7.5 7.6 7.4 Total 
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Table 4. The distribution of household heads according to the household structure and place of 

residence, 2006 

Total Total Rural Urban Household Structure 

M F M F M F 

9999999 9939 939 9938 938 9939 939 
Married without 

children   

9989999 9939 839 9939 9399 9939 939 
Married and have 

from  (1-3)child 

9999999 9939 939 9939 9 9939 938 
Married and have 

more than 3 child 

899999 939 98 938 9939 939 9839 
Widowed without 

children 

9999999 9 99 938 9939 939 9939 
Widowed and have 

from  (1-3)child 

999999 939 839 939 939 939 839 
Widowed and have 

more than 3 children 

999999 939 839 938 939 939 9939 Other 

99989999 99899899 9999999 8999989 9999999 9999989 9999999 Total 

 

 

It can also be noticed that among household headed by women, knowing how to read and write, 

have a positive influence on the education of their household members. Therefore, it was found 

that the percentage of women headed household who can read and write and their household 

members have acquired intermediate and less than university education is about 43%. The same 

percentage for the women household heads who acquired the primary education was reported, 

the same pattern was observed in rural areas. This indicates that women who acquire a simple 

extent of education are eager to support their household members towards education. 

 

5.2 Illiteracy among Children aged 10 -17 years 

 

Table 6 gives the percentage of illiteracy among children (10-17 years) by gender, household 

heads, wealth index, and place of residence. The data reveal that there is a strong negative 

relationship between the economic level of the household as measured by the wealth index and 

percentage of illiteracy among children in the family.  

Table 6 also shows that the total percentage of illiterate boys in the household with low 

economic level reached about 39%, 44% compared to about 44%, and 49.3% among the girls in 

the households that is supported by men and women respectively. More than half of girls in the 

households that are supported by women in rural areas (52.8%) who live in low economic 

standards suffer from illiteracy as compared to 47.8% among boys in households supported by 

women and have the same economic standard. 
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Table 5. The Distribution of Household Heads According to Gender, Educational Status, 

Residence and the Educational Status of the Household Members, 2006 

Total % 
University 

& Higher 

Intermediate 

& less than 

university 

Preparatory Primary 
Read & 

write 
Illiterate Educational status 

Men in Urban Areas 

9989999 999 939 9939 9939 9939 9939 9939 Illiterate 

9989999 999 939 9839 9939 9939 9939 9939 Read& write 

999999 999 938 99 9938 9938 9939 9939 Primary 

899999 999 939 9938 9939 99 9939 939 Preparatory 

9999999 999 9939 9938 99 9939 9939 939 
Intermediate & less 

than university 

9999999 999 9839 9939 9939 939 9939  University & higher 

Women in Urban Areas 

999989 999 939 9939 9939 9939 939 9938 Illiterate 

999989 999 9939 9939 9939 9939 9939 939 Read& write 

99999 999 9939 9939 9939 9938 939 939 Primary 

99998 999 9938 9939 9939 9939 939 939 Preparatory 

999999 999 9939 9839 9938 9939 839 939 
Intermediate & less 

than university 

999999 999 9938 9939 9939 9939 939 939 University & Higher 

 

 

In general the percentage of illiteracy among children whether men or women decreases by the 

increase in the economic level of the household, so this percentage in the households with higher 

economic level and especially in rural areas about 3.8%, and 5.1% between the girls and boys, 

respectively in the households supported by men in rural areas and is about 2.4%, 3.5% between 

girls and boys, respectively in the households supported by women in rural areas at the higher 

economic standard. 

 

5.3 Child Labor 

 

Children in poor families are more exposed to labor market to face the hard economic 

circumstances of their families.  Child labor is affected by the region (urban-rural) and also by 

the gender of household head. 

 

Although laws no. 127 of 1981 and child law of 1996 prevent children below age 14 from work 

or even training, there is a proportion of working children in households headed by women while 

this percentage is lower among households headed by men.  
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Table 5 (Cont.). The Distribution of Household Heads According to Gender, Educational Status, 

Residence and the Educational Status of the Household Members, 2006 

Men in Rural Areas 

9999989 999 939 9939 9939 99 9939 9939 Illiterate 

9999998 999 939 9939 99 9939 9939 9938 Read& write 

999999 999 939 9939 99 9839 9939 9839 Primary 

989899 999 939 9939 9939 9939 9938 9939 Preparatory 

9999999 999 9 99 9939 9939 99 9939 
Intermediate & less 

than university 

9999999 999 99 9939 9938 9939 9939 939 University &higher 

Women in Rural Areas 

9999999 999 939 99 9939 9939 99 9939 Illiterate 

99999 999 839 9939 99 9939 9939 939 Read& write 

99999 999 938 9939 9839 9939 9839 939 Primary 

99999 999 9 9939 9939 9938 9939 939 Preparatory 

999999 999 8 9939 99 9839 9939 939 
Intermediate & less 

than university 

98899 999 99 9939 9839 9939 9939 939 University & Higher 

 

 

 

Table 6. Percentage of Illiteracy among Children (10-17 Years) According to Gender, 

Household Heads, Wealth Index, and Place of Residence, 2006 

Total Rural Urban Place of residence 

M F M F M F Wealth Index 

Men support households 

6;.; 76.< 75.8 79.8 5;.: 56.4 Lowest 

57 58.6 59 59.9 4;.9 4<.8 Second 

4;.7 49.8 49.9 48.6 56.4 54.9 Middle 

45.6 <.8 <.; :.; 4< 49.; Fourth 

9.9 8 8.4 6.; 47.9 47 Highest 

477 477 477 477 477 477 % 

67<8:6 766649 5587:4 686744 ;7475 :<<78 Total 

Women support households 

76.8 7<.6 7:.; 85.; 67 68.7 Lowest 

56.6 57.6 58.; 58.; 4:.< 4;.6 Second 

4:.8 47.; 47.: 46 56.9 54.< Middle 

47.< ; ;.5 9 4:.5 48.: Fourth 

7.: 6.: 6.8 5.7 :.6 ;.: Highest 

477 477 477 477 477 477 % 

74895 88877 5;:7< 7745; 45;86 446:9 Total 
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Women-Headed Households 

 

Figure 6(a). Percentage of Illiteracy among Children from (10 -17) years, According to gender, 

wealth index, and place of residence (Women-Headed Households) 

 

 

Table 7 reveals high percentage of child labor in the age group 6-13 in households headed by 

women in urban areas (3.1%) and rural areas (2.7%); this can also be seen in Figure 7. The table 

also indicates a decrease in the percentage of child labor among child aged 6-13 with increase in 

the economic level of households headed by women in both urban and rural areas. 

The percentage of child labor increase with the increase in the age of the child where it is 

20% among boys aged 14-17 in both urban and rural compared to 3.6% and 5% among girls in 

the same age group in urban and rural respectively. In general, data in Table 6 also show a 

decrease in the percentage of child labor with the increase in the economic level of the household 

in urban and rural as well as for men and women. 
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Men-Headed Households 

 

Figure 6(b). Percentage of Illiteracy among Children from (10 -17) years, According to gender, 

wealth index, and place of residence (Men-Headed Households) 

 

Table 7. The percentage of children employment in age (6 to 17) for families headed by women 

regarding to wealth index and place of residence in year 2006 

Total Rural Urban Place of Residence          

    

          Wealth Index 
F M F M F M 

Under age 14 (6-13) 

939 939 939 939 939 939 Lowest 

939 939 939 939 939 939 Second 

939 939 939 939 939 939 Middle 

939 938 939 939 939 939 Fourth 

939 939 939 939 939 939 Highest 

939 939 939 939 939 939 Total 

(14-17) years 

939 9939 9 9939 939 9938 Lowest 

939 9939 939 9939 939 9939 Second 

939 9939 939 9939 9 9939 Middle 

939 839 939 9938 939 938 Fourth 

939 939 939 939 939 9 Highest 

939 9939 939 9939 939 839 Total 
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Figure 8 indicates an increase in the percentage of boys working in the households headed by 

men compared to that among households headed by women in both urban and rural areas.  Data 

also showed an increase in the percentage of boys working in rural areas than urban areas for 

both genders. This percentage increase was associated with the increase in age of children. The 

data show an increase in the percentage of working children in such households in the age group 

(7-14) as census data showed where this percentage was 17.3% for men in urban and 19% in 

rural areas. For women, it was 3% in urban and about 5% in rural areas among households in the 

lowest economic level or those which are headed by men. 

 

 

 

 
 

Age 6 to 46 

 

Figure 7(a). The percentage of children employment in age (6 to 46) for families headed by 

women regarding to wealth index and place of residence in year 2006 (Age 6 to 46). 
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Age 14 to 17 

Figure 7(b). The percentage of children employment in age (14 to 17) for families headed by 

women regarding to wealth index and place of residence in year 2006 (Age 14 to 17). 

 

6. Summary of Results and Recommendations 

 

6.1 Important Results 

 

1. Households headed by women represent small proportion out of the total households. 

These households are characterized by different characteristics that differ from the 

characteristics of households headed by men. Women are older than men, so they have a 

lower ability to participate in labor market and they depend largely on pensions and 

remittances. 

2. Husband’s death is the main reason behind the households headed by women where 

76.8% of the households headed by women are widowed in urban areas and 68.6% in 

rural areas. 

3. Most households headed by women are widowed and have children. While the 

households headed by men are married and have children.  

4. Educational level of the household heads is one of the main factors behind poverty. In 

urban areas 49.4% of households headed by women are poor and illiterate compared to 

60.9% in rural areas.  

5. Households with children are the most suffering from severe poverty. 

6. Poverty rates increased significantly in Lower Egypt and rural areas more than other 

areas of Egypt. 

7. Households headed by women are suffering low economic standards in urban areas while 

in rural areas they are suffering from severe poverty.  
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Age 6 to 46 

Figure 8(a). The percentage of children employment in age (6 to 46) for families headed by 

women regarding to wealth index and place of residence in year 2006 (Age 6 to 46). 

 

 

8. Poverty leads to transmitting the low educational level from one generation to the other 

as illiterate women heading their households are usually associated by illiterate children 

causing them to enter labor market early. 

9. The majority of households headed by women tend more to get children to labor market 

which leads to a low educational level and continued suffering from poverty. The high 

ratio of illiteracy and child labor are the main factors for transmitting poverty from one 

generation to the other. 

10. The percentage of girls in labor market is less than boys where girls are kept for the 

housework. 

 

 

6.2  Recommendations 

 

1. Designing new strategies to eradicate illiteracy is a necessity– especially for women. 

2. Raising the quality (rather than coverage) of education is a necessity. The educational 

processes have to include values and concepts that are capable of changing the women’s 

status and role in the society. 

3. Raising interest in the technical education for women and helping them acquire the skills 

required for labor market.  
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Age 14 to 4: 

 

Figure 8(b). The percentage of children employment in age (6 to 46) for families headed by 

women regarding to wealth index and place of residence in year 2006 (Age 14 to 4:). 

 

 

4. Reducing illiteracy rates among women and developing informal education programs. 

5. Providing training opportunities for women especially for household heads to help them 

find suitable job opportunities and to develop their productive and marketing capabilities. 

6. Exerting more efforts by the state, national associations and civil sector to provide job 

opportunities for women heads of households to provide a source of income particularly 

in rural areas. 

7. Setting objectives through insurance system to fulfill the needs of different poor groups. 

Assuring equal economic opportunities for both men and women who are heads of 

households such as the financial aids, employment and small projects. 

8. Increasing development programs directed particularly to the poorest women in rural 

areas and particularly heads of households. These programs have to direct their inputs 

according to education, health and economic priorities defined by the poorest households 

in rural areas. 
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Table 8. The percentage of children employment in age (6 to 17) for families headed by men 

regarding to wealth index and place of residence in year 2006 

Total Rural Urban Place of  Residence          

 

 

             Wealth Index 
F M F M F M 

Under age 14 (6-13) 

939 939 939 938 939 939 Lowest 

939 939 939 939 939 9 Second 

939 9 939 939 939 939 Middle 

939 939 939 939 939 939 Fourth 

939 39 939 939 939 939 Highest 

939 939 939 939 939 939 Total 

(14-17) years 

938 9839 939 9839 9 9939 Lowest 

939 9939 939 9939 939 9939 Second 

939 9939 939 9939 939 839 Middle 

939 939 939 939 939 939 Fourth 

939 939 939 939 939 939 Highest 

939 9939 939 9939 939 939 Total 
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ABSTRACT 

 

This paper establishes a necessary condition for ergodicity for the general first-order 

Smooth Threshold Autoregressive processes with general delay parameter d. This is 

achieved by investigating the non-linear dynamic behavior generated by the delay 

parameter of a smooth threshold model. It turns out that the ergodic region depends on 

the delay parameter d for which the region is reduced as d increases. 
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M. F. Omran 

Business School, Nile University, Egypt 
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ABSTRACT 

 

We extend the study of Omran (2009) by employing different valuation measures to examine the 

effect of Islamic values and beliefs on the stock valuation of Islamic financial institutions in the 

stock markets of the United Arab Emirates (UAE) during the period from 2001 to 2005. The 

current study examines whether UAE investors favor Islamic financial institutions in comparison 

with traditional financial institutions and other companies in the economy. The difference 

between the current study and Omran (2009) is that we employ the price to sales and price to 

book value multiples instead of price to earnings multiple used in Omran (2009).  The 

contribution of the current study is in confirming whether the results of Omran (2009) hold 

regardless of the valuation multiple used. It is found that there is a strong clientele preference for 

Islamic stocks in the UAE despite the modest financial performance achieved by these stocks. 

UAE investors were willing to give up the high return available on other stocks for the comfort 

of investing in stocks that closely follow Islamic laws. 

 

Keywords: Islamic Financial Institutions, Valuation, Clientele Preference 

 

1. INTRODUCTION 

 

The interest in Islamic finance has been growing for several years. Al-Salem (2008) states that 

the average annual growth in the assets of Islamic financial institutions has been 23% since 1994. 

The interesting trend in the last few years is the growing interest of non-Muslims in Islamic 

financial products and institutions. The interests of non Muslims is obviously not due to religion 

but it is rooted in the fact that many of the high risk endeavors taken by traditional financial 

institutions are not allowed at all under Islamic finance. Many of the highly risky exposures that 

led to huge losses for traditional banks would not be allowed under Islamic laws which consider 

them pure forms of gambling. However, the variety of Islamic financial products failed to grow 

at the same rate as the growth in interest in Islamic finance. The fact remains that there are not 

many products that comply with Islamic laws that can absorb the massive flow of funds. That 

could have an impact on profitability of Islamic financial institutions since they have to accept 

deposits that they may not have a use for. There is very little written on how Islamic financial 

institutions perform in comparison with traditional financial institutions.  

Omran (2009) was the first study to examine the financial performance of Islamic financial 

institutions compared with traditional financial institutions in the United Arab Emirates.  His 

results indicate that the return on equity of Islamic financial institutions lagged behind the UAE 

stock markets for the period from 2001 to 2005. However, Islamic financial institutions price 

earnings multiples were the highest in the market despite the poor financial performance. This 
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can only be attributed to the clientele effect of the UAE investors. They prefer to pay a premium 

for their faith namely for the comfort of knowing that their money is in full compliance with 

Islamic laws and regulations. The most obvious reason for the low return on equity is the lack of 

financial products that comply with Islamic regulations. Therefore, most of the funds lie idle 

which in turn reduces the return on equity. Return on equity has three drivers. The first is the net 

profit margin which is net profit after taxes divided by sales. Sales in case of financial 

institutions are revenues from loans and revenues from other services. The second driver is assets 

turnover which is sales divided by total assets. High assets turnover will certainly lead to higher 

return on equity. The last driver is the financial leverage which is total assets divided by equity. 

It is the second driver which is the problem in Islamic financial institutions. Total assets are not 

limited since no financial institution can refuse deposits. However, the product mix available for 

Islamic financial institutions is still limited which leads to a very low assets turnover and 

subsequently lower return on equity. The limited mix of products is due mainly to the 

insufficient academic research done on how to create innovative products that comply with 

Islamic laws and still utilize the idle funds available to Islamic financial institutions. 

The objective of the current study is rather modest. We aim to determine if the results of 

Omran (2009) remain valid if different measures of valuation are used. In other words, is the 

clientele effect still there if we use different measures of valuation? We employ the price to book 

value and price to sales multiples instead of the price to earnings multiple used in Omran (2009). 

The study confirms the results of Omran (2009) that there is a strong clientele preference for 

Islamic financial institutions in the UAE regardless of which measure of valuation is adopted.  

The study is divided into 6 sections with the introduction in the first section. Section 2 

discusses the composition and drivers of values for the price to book value and price to sales 

multiples. Section 3 describes the data set. Section 4 examines the determinants of the price book 

value multiple. Section 5 examines the determinants of the price sales multiple. Section 6 

concludes the study. 

 

2. VALUATION MODELS  

 

The three most used multiples in valuation are the price to earnings (PE), the price to book value 

(PBV), and the price to sales (PS). The focus of the current study is on the PBV and PS. The 

book value of equity is the difference between the book value of assets minus the book value of 

liabilities. The price is the market value of the asset, which can deviate significantly from the 

book value in line with the expectation of future earnings power and cash flows. Lie and Lie 

(2002) studied 8,621 companies that were active in the Compustat database for the fiscal year 

1998. They found that PBV estimates of per share value of equity are more precise and less 

biased than the PS and PE estimates. They also found that valuation seems to be more accurate 

for financial firms presumably due to the high liquidity of their assets. 

The PBV for a stable firm can be derived as follows. The price at time zero is given by 
 

gK

bROEBV
P






)1)(( 10

0

 

 

where BV0 is the book value of equity at time zero, ROE1 is the expected return on equity at time 

one, 1-b is the payout ratio, b is the retention ratio, g is the growth rate, and K is the required rate 

of return. Omran (2003) shows that  PBV is an increasing function of ROE, growth rate, and a 

decreasing function of the required rate of return (and therefore a decreasing function of the 
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firm’s risk). The same economic fundamentals drive the PBV for companies experiencing 

supernormal growth rates. 

 

The price sales (PS) multiple for a stable firm can be derived as follows. The price at time 

zero is given by  

 

gK

gbNPMS
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where S0 is the sales at time zero, NPM is the net profit margin, 1-b is the payout ratio, g is the 

growth rate and k is the required rate of return. Omran (2003)  shows that PS is an increasing 

function of net profit margin, payout ratio, and growth rate, and a decreasing function of the 

firm’s risk (and therefore a decreasing function of the required rate of return). 

 

3. DATA 

 

The study is a regression analysis of the panel data for the firms listed in the local share 

directories from 2001 to 2005. The local share directory is published by the national bank of Abu 

Dhabi.  The sample has 88 companies that are traded in at least one of the two major stock 

markets in the UAE, the Abu Dhabi Stock Market or Dubai Financial Market. The appendix at 

the end of the paper contains the companies’ names along with their stock market codes. The 

sample includes 8 financial services companies, 18 banks, 19 insurance companies, 6 Islamic 

financial institutions (3 banks and 3 insurance companies), and 37 companies in other sectors of 

the economy. The pooled data approach is used in the study. There are 308 observations in the 

sample. The data are end of year values and pooled in time series and cross section directions. 

For example, for each company in the sample the end of year results are included and pooled 

with the rest of the companies in the cross section sample. Dummies will be added in the 

methodology section to take into account different intercepts per industry.  

 

4. THE DETERMINANTS OF THE PRICE BOOK VALUE (PBV) MULTIPLE 

The analysis in section 2 indicated that PBV is positively related to return on equity (ROE), 

growth rate and a decreasing function of the required rate of return.  The correlation coefficients 

between the PBV and each of  ROE and growth rate are 0.40 and 0.15, respectively. The 

correlation coefficients have positive signs, as expected. Figure 1 plots PBV on the y-axis versus 

ROE on the x-axis together with the fitted OLS line. This figure confirms the previously 

mentioned economic theory that there is a positive relationship between the two variables.   

The following equation is obtained using OLS based on the determinants that significantly drive 

the PBV multiple in the UAE between 2001 and 2005.  

 

Equation 1 

iiii uDIslamicDInsuranceDBanksDFServicesGROEPBV  6543210   

 

Where PBVi is the price to book value for company i.   
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Figure 1: Scatter plot of PBV versus ROE along with the least squares fit 

 

 

Table 1: The regression results for the PBV multiple. * refers to significance at 5% level and ** 

refers to significance at the 10% level. 

Coefficients Value t-value Pr(>|t|) 

0  1.4104* 8.7509 0.0000 

1  (ROE) 5.9173* 8.8611 0.0000 

2  (Growth) 0.1326** 1.8172 0.0702 

3 ( Financial 

Services) -0.3982 -1.2913 0.1976 

4 ( Banks) 0.5401* 2.7534 0.0063 

5 ( Insurance) -0.8421* -4.1962 0.0000 

6 ( Islamic) 1.0721* 3.2918 0.0011 

Multiple R-Squared: 0.3078. F-statistic:  22.31 on 6 and 301 degrees of freedom, the p-value is 0 

indicating significance at 1% level. 

 

 

G is the growth rate in total assets from one year to the next for company i, 

DFServices is a dummy variable that takes a value of one for a traditional financial services such 

as finance houses, and zero otherwise, 

DBanks is a dummy variable that takes a value of one for a traditional bank, and zero otherwise. 

DInsurance is a dummy variable that takes a value of one for a traditional insurance company, 

and zero otherwise. 

DIslamic is a dummy variable that takes a value of one for an Islamic financial institution 

(whether it is a bank or insurance company), and zero otherwise. 
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The results indicate that the PBV is significantly positively related to ROE at the 1% level. The 

growth rate has the expected positive sign but it is only significant at the 10% level. The 

coefficients for banks, insurance and Islamic financial institutions are all significant at the 1% 

level. Insurance has a negative coefficient indicating low preference for the common stocks of 

insurance companies. Banks demand a higher premium but still half that of Islamic financial 

institutions. The premium coefficient for banks is 0.54 compared with 1.07 for Islamic financial 

institutions. The model explained 31% of the total variation in PBV and the overall model is 

significant at the 1% according to the F test. Table 2 has the average PBV multiples, average 

growth, average payout, and average return on equity (ROE) for the UAE stock markets as well 

as for each sector. The Islamic sector contains 3 Islamic banks and 3 Islamic insurance 

companies. 

 

 

Table 2 Average PBV by sectors along with averages for growth rates, payouts, and return on 

equity (ROE)  during the period from 2001 to 2005. 

  

Number Average PBV 

Average 

Growth 

Average 

Payout 

Average 

ROE 

The Whole 

Sample 

88 

2.42 39.88% 43.67% 16.45% 

Financial 8 2.33 90.24% 23.85% 24.13% 

Banks 18 2.56 23.40% 33.63% 16.06% 

Insurance 19 1.66 33.94% 40.45% 17.68% 

Islamic 6 3.43 130.81% 43.21% 13.17% 

The Rest 37 2.33 27.37% 57.46% 14.85% 

 

 

This table shows that Islamic financial institutions have 42% more premium in PBV compared 

with the average PBV of the UAE stock markets. Islamic financial institutions have demanded 

the highest premium despite of the fact that they had achieved the lowest return on equity during 

the period. The growth in total assets of Islamic financial institutions averaged 130.81% during 

the period in contrast with an overall average of 39.88% for the whole market. The huge growth 

in the assets of Islamic financial institutions is a clear indication for the UAE clientele preference 

for companies closely following Islamic laws despite of the fact that those companies achieved 

the lowest return on equity compared with the rest of the companies in the market. 

 

5. DETERMINANTS OF THE PRICE SALES (PS) MULTIPLE 

 

The analysis in section 2 indicated that PS is an increasing function of net profit margin (NPM), 

growth rate and payout ratio. The correlation coefficients between PS on one hand and each of 

NPM, growth and payout ratio are -0.05328789, 0.02995263 and -0.01065787, respectively. 

Omran (2003) showed that the logarithm of PS should be modeled as a linear function of NPM.  

Figure 2 shows the logarithm to the base ten of PS on the Y-axis versus NPM on the X-axis.  
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Figure 2: logarithm of price sales (PS) versus net profit margin (NPM) 

 

The correlation coefficients between log(PS) and each of NPM, growth and payout ratio are 

0.1596912  0.10363279  0.07811821, respectively. A regression model of log(PS) on NPM, 

growth, and payout yielded significant coefficient for NPM only. Accordingly, it was decided to 

run the following regression equation. 

 

Equation 2 

iii uDIslamicDInsuranceDBanksDFServicesNPMPS  543210)log(   

where Log(PSi ) is the log to the base 10 of the price sales multiple for company i.  

NPMi is the net profit margin for company i, 

DFService is a dummy variable that takes a value of one for traditional financial services such as 

finance houses, and zero otherwise, 

DBanks is a dummy variable that takes a value of one for a traditional bank, and zero otherwise. 

DInsurance is a dummy variable that takes a value of one for a traditional insurance company, 

and zero otherwise. 

DIslamic is a dummy variable that takes a value of one for an Islamic financial institution 

(whether it is a bank or insurance company), and zero otherwise. 

 

The results indicate that NPM is no longer significant when industrial sectors are included. 

Financial services are not significant in line with the results for PBV multiple in Equation 1. 

Insurance companies demand a positive significant premium equal to that of the banks which 

contradicts the results on PBV in equation 1. where insurance companies commanded a negative 

premium. However, in line with the results on PBV reported in equation 1 and PE reported in 

Omran (2009), Islamic financial institutions demand far more premium compared with the whole 

market. Their log(PS) premium is almost 3 times the premium charged by banks and insurance 

companies. Table 4 shows the average log(PS) multiples, average growth, average payout, and 

average return on equity (ROE) for the whole market as well as for each sector.  
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Table 3: The regression results for the log(PS) multiple. * refers to significance at 5% level and 

** refers to significance at the 10% level. 

Coefficients Value t-value Pr(>|t|) 

0  0.6535* 14.3718 0.0000 

1  (NPM) 0.0859 0.7860 0.4325 

3 ( Financial 

Services) 0.0208 0.2292 0.8189 

4 ( Banks) 0.2245* 3.8882 0.0001 

5 ( Insurance) 0.2109* 2.5283 0.0120 

6 ( Islamic) 0.6407* 7.1057 0.0000 

Multiple R-Squared: 0.1831. F-statistic: 13.53 on 5 and 302 degrees of freedom, the p-value is 0. 

 

 

Table 4 Average log(PS) by sector along with averages for growth rates, payouts, and return on 

equity (ROE)  during the period from 2001 to 2005. 

  

 

Number 

Average 

log(PS) 

 

Average 

Growth 

 

Average 

Payout 

 

Average 

ROE 

The Whole 

Sample 

88 

0.85 39.88% 43.67% 16.45% 

Financial 8 0.73 90.24% 23.85% 24.13% 

Banks 18 0.92 23.40% 33.63% 16.06% 

Insurance 19 0.94 33.94% 40.45% 17.68% 

Islamic 6 1.34 130.81% 43.21% 13.17% 

The Rest 37 0.68 27.37% 57.46% 14.85% 

 

 

This table shows similar results to table 2. Islamic financial institutions demand a much higher 

premium than the whole market. The clientele effect seems to be robust regardless of which 

model is used.  Diagnostic tests were conducted on the residuals from equations 1 and 2 which 

included the normal probability plots and heteroscedasticity tests that involve running the 

squared residuals on the independent variables. Both models have passed the two diagnostic 

tests. The residuals QQ plot is close to the line drawn by the normal distribution. Also, none of 

the coefficients in the regression of the squared residuals on the cross section variables is 

significant. The whole regression is also not significant at the 10% level suggesting that the 

residuals can be described as free of cross sectional heteroscedasticity.  

 

6. COMMENTS AND CONCLUSION 

 

This study examined if the results of Islamic clientele preference found by Omran (2009) were 

specific to the valuation model used in his study. There are three major valuation models used 

namely, the price earnings, price book value and price sales multiples. Omran (2009) used price 

earnings PE multiple and reached the conclusion that Islamic financial institutions seem to be 

over priced compared with the rest of the industry. The higher price premium was explained by 
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Omran (2005) as a preference by UAE investors to deal with Islamic financial institutions 

regardless of how much profit they achieve in relation to their assets base. Islamic financial 

institutions achieved the lowest return on equity during the period of study (2001-2005) and yet 

they witnessed a massive growth in their assets during the same period. It is argued that their low 

return on equity is because of lack of investment opportunities and products that comply with 

Islamic laws. This leads to Islamic banks having a large amount of idle cash that does not earn 

profit which impacts negatively their return on equity. This study found that the results of Omran 

(2009) hold true regardless of the valuation model. Both of the price book value PBV and price 

sales PS models show Islamic clientele preference for Islamic financial institutions regardless of 

low profitability. We recommend that more research be devoted for developing more Islamic 

products that can accommodate the massive flow of funds into Islamic financial institutions. 

 

APPENDIX 

   

1 NBAD NATIONAL BANK OF ABU DHABI 

2 ADCB ABU DHABI COMMERCIAL BANK 

3 ADIB ABU DHABI ISLAMIC BANK 

4 AEIB ARAB EMIRATES INVESTMENT BANK 

5 BOS BANK OF SHARJAH 

6 CBD COMMERCIAL BANK OF DUBAI 

7 CBI COMMERCIAL BANK INTERNATIONAL 

8 CBIE 

COMMERCIAL INTERNATIONAL BANK 

EGYPT 

9 DIB DUBAI ISLAMIC BANK 

10 EBI  EMIRATES BANK INTERNATIONAL 

11 EIB EMIRATES ISLAMIC BANK 

12 FGB FIRST GULF BANK 

13 FH FINANCE HOUSE 

14 IB INVEST BANK 

15 MASHRAQ MASHRAQ BANK 

16 NBD NATIONAL BANK OF DUBAI 

17 NBF NATIONAL BANK OF FUJAIRAH 

18 NBQ NATIONAL BANK OF UMM AL-QAIWAIN 

19 RAK NATIONAL BANK OF RAS AL-KHAIMAH 

20 SIB SHARJAH ISLAMIC BANK 

21 UAB UNITED ARAB BANK 

22 UNB UNION NATIONAL BANK 

23 ADNIC ABU DHABI NATIONAL INSURANCE  

24 AIN AHLIA ALAIN AHLIA INSURANCE  

25 BUHAIRA AL BUHAIRA NATIONAL INSURANCE  

26 DHAFRA  AL DHAFRA INSURANCE  

27 KHAZNA AL KHAZNA INSURANCE  

28 WATHBA AL WATHBA NATIONAL INSURANCE  

29 ALLIANCE ALLIANCE INSURANCE 

30 AMAN DUBAI ISLAMIC INSURANCE (AMAN) 
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31 ARIG ARAB INSURANCE GROUP 

32 ASI ARABIAN SCANDINAVIAN INSURNACE 

33 SAQR AL SAQR NATIONAL INSURANCE  

34 DIC DUBAI INSURANCE  

35 DNI&RC DUBAI NATIONAL INSURANCE 

36 EIC EMIRATES INSURANCE  

37 NGI NATIONAL GENERAL INSURANCE  

38 OI OMAN INSURANCE 

39 

RAK 

INSURANCE RAS AL KHAIMAH NATIONAL INSURANCE  

40 SALAMA ISLAMIC ARAB INSURANCE  

41 SIC SHARJAH INSURANCE  

42 TAKAFUL ABU DHABI NATIONAL TAKAFUL  

43 UIC UNITED INSURANCE  

44 UNION  UNION INSURANCE 

45 ASMAK INTERNATIONAL FISH FARMING  

46 RAK POULTRY RAS AL KHAIMAH POULTRY & FEEDING  

47 BILDCO 

ABU DHABI NATIONAL CO. FOR BUILDING 

MATERIALS 

48 FCIC FUJAIRAH CEMENT INDUSTRIES  

49 GC GULF CEMENT  

50 NC NATIONAL CEMENT 

51 UAQC UMM AL QAIWAIN CEMENT INDUSTRIES 

52 RAKCEMENT RAS AL KHAIMA CEMENT 

53 RAKCERAMICS RAS AL KHAIMA CERAMICS 

54 RAKWC RAS AL KHAIMA WHITE CEMENT 

55 SCID 

SHARJAH CEMENT & INDUSTRIAL 

DEVELOPMENT 

56 

UNION 

CEMENT UNION CEMENT 

57 AGTHIA EMIRATES FOODSTUFF & MINERAL WATER  

58 FOODCO ABU DHABI NATIONAL FOOD STUFF  

59 JEEMA JEEMA MINERAL WATER 

60 ABAR ABAR FOR PETROLEUM INVESTMENT 

61 TAQA ABU DGABI NATIONAL ENERGY 

62 ADSB ABU DHABI SHIP BUILDING 

63 AMLAK AMLAK FINANCJSC 

64 DI DUBAI INVESTMENT  

65 GGI GULF GENERAL INVESTMENT  

66 GLOBAL GLOBAL INVESTMENT HOUSE 

67 IFA INTERNATIONAL FINANCIAL ADVISORS 

68 O&E OMAN & EMIRATES INVESTMENT HOLDING 

69 SHUAA SHUAA CAPITAL 

70 ADA ABU DHABI AVIATION 

71 OASIS OASIS INTERNATIONAL LEASING 

72 GMP GULF MEDICAL PROJECTS 
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73 JULPHAR GULF PHARMACEUTICAL INDUSTRIES 

74 ALDAR AL DAR PROPERTIES 

75 ARTC ARAB TECHNICAL CONSTRUCTIONS 

76 EMAAR EMAAR  PROPERTIES 

77 RAKP RAS AL KHAIMAH PROPERTIES 

78 UP UNION PROPERTIES 

79 ARAMEX ARAB INTERNATIONAL LOGISTICS 

80 ED EMIRATES DRIVING 

81 NMD NATIONAL MARINE DREDGING 

82 TABREED NATIONAL CENTRAL COOLING 

83 ETISALAT EMIRATES TELECOMMUNICATION  

84 PALTEL PALESTINE TELECOMMUNICATION 

85 QTEL QATAR TELECOM. 

86 SUDATEL SUDAN TELCOMMUNICATION 

87 ADNH ABU DHABI NATIONAL HOTELS 

88 NCTH 

NATIONAL CORPORATION FOR TOURISM & 

HOTELS 
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ABSTRACT 

 

Background: The present study examines the trend and future prospects of contraceptive use in 

reducing fertility among Muslim women in Nigeria. Studies have shown that contraceptive use 

contributed significantly to below fertility replacement in most of the western countries and 

ultimately to population ageing. Governments of Nigeria and non-governmental organization 

have embarked on massive promotion of contraceptive use to reduce population growth rate to 

two percent. Hospitals have been equipped with health facilities to provide family planning 

services. Family planning program have been extended to males because of their prerogative in 

fertility decision making in Nigeria. It is expected that involvement of male in family planning 

program will pave way for the adoption of contraceptives use and consequently fertility decline. 

Low fertility may be relevant for socioeconomic development, although not always consistent. 

 

Methods: Demographic and Health Survey (NDHS) conducted in Nigeria 1990, 1999 and 2003, 

which covered 4269, 3620 and 3601 respectively of women aged 15-49 were used in the study. 

We employed descriptive analysis to explain already existing conditions surrounding fertility of 

the Muslim women. Trends in the indicators of current use of contraceptive, intention to use by 

non users, husband approval of family planning (FP), Discussed FP with partner, ideal number of 

children and desire for more children were examined. Trends in average number of children ever 

born by background were examined in relation to contraceptive use.  

  

Results: The use of modern contraceptives has increased by two percent from 1990 to 2003. The 

percentage of women who do not intend to use contraceptive has remained stable at seventy 

percent between 1990 and 2003. The percentage of women who want no more children increased 

with the number of living children. Fifty-four percent of men did not approve FP for their spouse 

and eighty-one percent of the women have never discussed FP with their partners. Average 

number of children ever born by background did not show meaningful changes over time. 

Increase in wealth, education and number of living children are associated with increasing 

contraceptive use.  

 

Conclusion: Contraceptive use does not seem to play any decisive role or posit bright future for 

fertility decline among Muslim women in Nigeria. Trend in average number of children ever 

born shows that population ageing is not so imminent. Bright prospects for contraceptive use 

may depend on dynamics in education, economic advantage and living number of children.    
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Keywords: contraceptive use, socioeconomic development, fertility decline, population ageing, 

Family planning    

 

1. INTRODUCTION 

 

Nigeria comprises fifty percent Muslim, forty percent Christian and ten percent other religion has 

the potential of becoming the fifth largest population by 2050 (US Bureau of census 2001). This 

is of concern because the population growth is through natural increase. The tempo of population 

increase in Nigeria has therefore attracted attention of the government, international 

organization, and non-governmental organization (NGOs). Consequently, there have been 

aggressive campaigns promoting the use of contraceptives and establishment of health facilities 

for family planning.   While the sole aim is to reduce fertility, it is important to note that 

excessive use of contraceptive is a prime cause of population ageing.  

Religious leaders, husbands and the influential people within lineages are some of the critics 

of modern contraception in Nigeria (Pearce, 2001). The oppositions does not seem to be based 

on side effects of contraception, but rather children are gifts and preventing their coming into 

being is a crime against existence and violation of divine order. An average man in Nigeria holds 

a contrary view that high fertility is the cause of poverty in Nigeria. In addition, Nigeria as a 

country has enough natural resource that can sustain the population in the absence of greed. This 

has been the cause for the loss of confidence in the leadership of the country. The effect of this 

was that men did not endorse the distribution of contraceptives among wives (Olusanya’s, 1969; 

Jinadu & Ajuwon, 1997). Traditionally, Nigeria nation is a pro-natalist society which advocates 

for large family size. In addition clinging to their religious beliefs which by no means consider 

contraception relevant has sustaining effects on high fertility.  Although in the recent times men 

are involved in the family planning programme, it is still unknown to what extent the 

involvement has faltered their cultural and traditional belief in fertility decision making.    

There are reports that fertility is declining in Nigeria (NPC, 2000; United Nations, 2000) and 

prospects for further reduction is bright (Feyisetan and Bankole, 2002; Oladosu, 2001). A recent 

report suggests that fertility decline that started in most Sub Saharan Africa has slowed down 

(Bongaarts, 2005). There has been consistent increase in the use of modern contraceptives, 

education, urbanization and involvement of men in family planning in the recent times in 

Nigeria. All these activities are known to reduce rapid population growth and fertility in Nigeria. 

Most importantly, the government and nongovernmental organization are now seemingly 

working in an orchestrated fashion to reduce population growth through contraceptive use and 

family planning. Thus far, it is not known to what extent the efforts of the government, 

nongovernmental organizations and other pressure groups have affected fertility among the 

Muslim women in Nigeria. Considering the patriarchal nature of Muslim society in Nigeria, the 

paper describes the trend in modern contraceptive use among the Muslim women and its future 

prospects on fertility decline in Nigeria. The indicators of fertility between 1990 and 2003 

Nigeria Demographic and Health Surveys are used to evaluate the trend, future prospects of 

contraceptive use and fertility decline among Muslim women.   
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2.  FACTORS AFFECTING FERTILITY AND FERTILITY REGULATION 

 

The entire edifice of fertility in Nigeria is modulated by economical, cultural and religious 

background.  In general, these setting may sustain high fertility in Nigeria from historical norm.  

 

2.1 Economical Perspective 

 

Economic status may have increasing or decreasing effects on fertility depending on the 

availability of resources or economic orientation of the people. From the economic perspective, 

sustained high fertility between 1970s and 1980s was as a result of booming oil revenues. 

Consequently, there was increase in salary of workers and food importation (Bankole and 

Bamisaye, 1985). Parents had the ability to cater for children with confidence. For instance in 

1983-1986, fertility was 7.4 per woman (Feyisetan and Bankole 2002). Unfortunately, this era of 

affluence met its debacle by 1986. The introduction of structural adjustment program (SAP) in 

1986 affected child bearing disposition. SAP introduced economic conditions that made child 

rearing exorbitant. Thus fall in fertility in the interval of 1986-1990 to 6.3 was motivated by 

economic hard times. In deed studies have shown that economic upheaval was the main reason 

for fertility decline in Nigeria (Orubuloye 1998; National Research Council 1993).  

Political and economical turmoil motivated fertility transitions have been documented in 

Nigeria (Lesthaeghe 1989; National Research Council 1993). Of a particular importance while 

other regions are experiencing rapidly fertility decline due to economic downturn, Northwest and 

Northeast dominated by Muslims were lagging behind (Feyisetan and Bankole 2002). Surveys 

have shown that lack of access to and costs of obtaining contraceptives are extremely negligible 

to be the cause for high fertility in Nigeria (NPC, 2000; NDHS 2003). In the recent study 

conducted in Northern Nigeria, eighty-five percent of the male dissuade contraceptive use on the 

ground of poverty (Duze & Mohammed, 2006). Inability to cater for children does not deter 

having them among the Muslims. The only explanation is based on Islamic belief that every 

child comes into existence with his sustenance. However, studies and findings in Europe and 

other Muslim countries support that economic downturn accounted for fertility decline 

(Sundguist 2008; Caldwell 2008).  

The unfavorable economic state is persisting in Nigeria. The government of Nigeria was 

unable to provide jobs for the graduates, high cost of schooling and poor health services. The 

failed development planning of the government lashed its impact on the poor. There was rise in 

corruption among the leaders and politicians leading to trouncing of confidence in the 

government by the populace. The poor and the middle class men turned to religion for certainty 

in uncertain world (Imam 2003). The religious groups provided the services which the state 

could no longer provide (Imam 2003). The price the poor masses paid was coercion to the tenets 

of the religious groups.         

 

2.2 Religious Perspective 

 

In Nigeria irrespective of creed, tribe or social status, the belief that children are gift from God is 

formidable enough to desire many children. This unifying belief makes it difficult to disentangle 

the roles of culture and religion on fertility matters. NDHS 2003 shows that nine percent of 

currently married women are prohibited from using contraceptives for religious reasons. In 

addition, fear of side effects of contraceptives is increasing over time among the women. Of a 
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particular importance, FP has been perceived as a subtle program of the western powers to 

impinge on the Muslim population (Renne 1996). This may have confounded the already 

existing negative attitude to FP. It is noteworthy that Muslim jurists accept contraception and 

abortion up to forty days (Imam 2003). However, Muslim religious right in Nigeria has 

disillusioned the knowledge about contraceptive techniques on grounds that it promotes 

immorality (Imam 2003). The result of this is that women’s interests and rights are sacrificed on 

the altar of appeasement for religious right that favours male dominance. In the northern Nigeria, 

negative attitude to family planning is driven by religious belief, which is embedded in their 

culture and tradition (Duze & Mohammed 2006).  

 

2.3 Socio-Cultural Perspective 

 

Nigeria cultural settings in its entirety support high fertility through the medium of male 

dominance in fertility decision making. Surveys have shown that Nigerian men like any other 

patrilineal society in Sub Saharan Africa desire large family sizes (Isiugo-Abanihe 1994). The 

pro-natalist behaviour of men entrenched in cultural belief and anticipated benefit on children is 

still esteemed in Nigeria. Nigeria is a rural based nation with about eighty percent of the 

population engages in subsistence agriculture where children are productive agent. Northern 

Nigeria evidently is the food basket of the nation. In this regard, cost of regulating fertility is 

high among the Muslim. Irrespective of the number of living children, about forty-five percent 

and twenty-eight percent of currently married women aged 15-29 and 30-49 respectively do not 

intend to use contraceptives (NDHS 2003). The reason was that they want as many children as 

possible. In patriarch northern Nigeria, women owe allegiance to husbands’ family in terms of 

labour and childbearing because bride wealth has been paid to her family. This therefore gives 

the husband unquestionable control over family issues, which may be exercised in a despotic 

manner. Even Sharia Penal Code permits husbands to beat wives in the 1960 Penal Codes (Imam 

2003). Over seventy-five percent of Hausa and Kanuri spouses reported that wife opinion is 

negated on family size (Duze & Mohammed 2006).  

Some social and public institutions are in favour of men even in fertility and family matters. 

For instance, women may be denied FP services in government hospitals without the consent of 

their spouses (Duze & Mohammed 2006). Patriarchal dominion of men is a serious barrier in 

adopting family planning among Muslim women. Studies show in patrilineal societies like 

Nigeria or elsewhere men influence the use of contraceptive (Khalfa 1988; Oni & McCarthy 

1990; Mbizuo & Adamchack 1991). 

Another practice that sustains high fertility in Nigeria is the practice of polygyny. The 

Muslim men are under obligation to practice polygyny in order to be like the Prophet (Imam 

2003). Polygyny itself introduces an aspect of competition among the wives to gain greater 

assets of the family, which depends on the number of male children. There is high preference for 

male children since they will retain the family name. The parents equally value female children, 

although they are expected to leave their fathers house and name due to marital debut. However, 

parents still depend on them for fiscal remittance.    

The crave for children especially male is not limited to Nigeria, but it cuts across the Sub 

Saharan Africa countries, India and China. For instance, low contraceptive use in Tanzania is 

attributed to desire for more children (Mwageni 2001). In India, failure to adopt contraceptive 

use is due to desire to have male children. In China, negative attitude to use contraceptive have 

been associated with unmet desire to have a male and female child (Whyte and Gu, 1987: 478). 
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It is noteworthy that common interest of economic and security at old age underlie the desire for 

children irrespective of races.  

Taken together culture, religion and even adverse economic conditions among Nigeria 

Muslims are still antagonistic to the crusade for FP and contraceptive use. This may partly 

account for the declined trends in support of FP from respondent and spouse that were observed 

in Nigeria Demographic and Health Surveys (NDHS) 1990 and 1999 (Oladosu 2001). Unknown 

side effects of contraceptives may have also contributed in the decline for FP support. More 

important, seventy-three percent of married women in 1999 NDHS with four living children 

want to have another child (NPC, 2000:88). This may suggest that motivation for fertility 

regulation or low fertility is apparently weak and discouraging (Easterlin 1985).  

 

2.4 Need for Fertility Regulation 

 

It appears that the zeal to regulate fertility is low, but the need has been echoed by considerable 

number of women who desire to end childbearing (Dodoo 1993).  The percentage of women with 

unmet needs of FP has increased by twenty-seven percent between 1999 and 2003 (NDHS 1999; 

2003). Those who want to stop childbearing by number of living children increased by forty-six 

percent within the same interval.  Apart from the prevailing socio-cultural, economic and 

religious impediment on contraception, FP facilities are located in remote places or urban areas. 

In Kano state, health facilities are sited in urban areas where about eighty percent of public and 

private hospitals are located (Mohammed and Khalid 1995). Hence, the majority of the 

population has no access to the services. The decisive role of men in fertility in Sub Saharan 

Africa is a severe vitiation to women’s right.  About eighty percent of men in Sudan were against 

limiting family size due to religious belief (Duze & Mohammed 2006). This may be a justified 

reason to discourage contraceptive use. However, refusal to approve contraceptive use at the 

detriment of women’s life due to incessant pregnancies (Khalfa 1988; Mustapha and Mumford 

1984) is astounding. Thus the resultant of patriarchal dominion of men is abuse of women and 

children. One of the things that promote abuse of women is the dependence on male as the 

provider in the house 

 

3. ROLE OF GOVERNMENT AND NONGOVERNMENTAL  

ORGANISATIONS ON FERTILITY REGULATION 

 

Nigerian government and some African countries like Ethiopia, Tanzania and Somalia were 

adamant to international concern over population growth (Pearce 2001). Until mid 1980s, 

Nigerian government became concerned on population growth (Pearce 2001), possibly due to 

economic downturn. Role of government has been very cynical on matters of fertility which 

NGOs have not admired.  Dependency of women on male for economic support was upheld in 

the Nigeria population policy of 1988. Despite the fact that population control was motivated by 

economic crises, the government failed to stipulate her interest on economic development in the 

policy.  

We hold the view that the population policy of 1988 was skeptical because firstly 

government was not controlling disbursement of fund for fertility control. Secondly, power 

brokers, religious and community leaders, were against contraceptive use (UNFPA 1996:23). 

Thirdly, men dominated the strategic places that could promote fertility regulation (Berer 1996). 

Finally, the population policy document stipulates “the patriarchal family system in the country 
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shall be recognized for the stability of the home” (FMOH 1988; 19). On 29 January 2004, 

Nigerian Minister of Health then, Eyitayo Lambo announced a new policy that would replace the 

1988 national population policy under which each couple was encouraged to have four children 

or more (RedOrbit 2004). Lambo said that the new policy would also encourage Nigerians on the 

need to have the number of children they could cater for, since there was no ceiling on the 

number of children per couple in the new policy. He said the target for the 2004 policy was to 

ensure that Nigeria's population growth rate was reduced from the current three percent per 

annum by 2015. The government would check population surge, by promoting the use of modern 

contraceptives. Indeed, there is nothing spectacular in this new policy compared to that of 1988. 

The expectation that it would affect population growth and fertility is with little confidence.    

Recall that the population policy of 1988 did not put any development plan down. However, 

it was initially sold to the populace as a health and development benefit (Pearce 2001) and 

population was propagandized as a developing state feature in the midst of stagnant economy. 

Thus, the state procured external funds, technical advice, technology and equipment (Pearce 

2001). However, with the cession of external funding, future of the entire family planning 

program is in jeopardy, since the neither government nor the public can bear the cost of supplies 

(UNFPA 1996). The entire program is at the verge of collapsing; as agencies began withdrawal.  

Succinctly there has been profound reliance on external funding from Britain, USA, UNFPA, 

UNICEF and NGOs like The Ford Foundation, International Planned Parenthood Federation 

(IPPF). With the raging economic problem and sensation that the government is not working in 

the interest of the masses, nongovernmental organizations multiplied to manage the community 

problems (Pearce 2001). All hope was that NGOs would rectify the problems of the 

marginalized, especially those in the rural areas in terms of health and family planning. 

However, the multiplication of NGOs gave birth to duplication of health and reproductive 

projects among the locally and externally driven groups.  The erratic scene was difficult to 

resolve because NGOs were working in the interest of their funders. Hence, none took full 

control of policies and activities designed for women’s health. However, NGOs are always at 

conflict with the government on issues of policy regarding women health. The coalition formed 

by 140 NGOs working on women’s reproductive health insisted that Nigeria’s agenda for the 

1994 population conference in Cairo should included plans for economic development and other 

issues that affect women’s health (Olukoya 1996).  

Activities of NGOs in providing family planning sensitization, education, counseling and 

delivery services have increased over the years. NGOs especially Planned Parenthood Federation 

of Nigeria (PPFN) has extended their reproductive health services to adolescents. Adolescents 

were of secondary interest until recently (Makinwa-Adebusoye 1991; Jinandu & Ajuwon 1997). 

There was incorporation of family planning and maternal and child health service under the 

primary health care system to offer more opportunities to reach potential clients (PHC 1987). 

There was community based distribution program in many parts of Nigeria, including the North 

which has the greatest resistance to family planning services. High levels of male participation in 

family planning have been documented for the Southwest and Southeast (Feyisetan et al. 1998; 

Odimegwu 1999). The use of the mass media to promote family planning has been found to be 

effective in changing contraceptive behavior in Nigeria (Bankole et al. 1999; Odimegwu 1999).  

These newer dimensions in the provision of family planning services are expected to increase 

access to family planning services, minimize adolescents’ pregnancies and change men negative 

attitude to contraception. However, attempts have been made to deter non-governmental 

organizations to run workshops on sexuality education and FP. There is evidence of removal of 
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sex education from school curricula (Imam 2003) in the northern Nigeria. Indeed significant 

participation of men in family planning has been documented for the Southwest and Southeast. 

The involvement of men in the north is not yet clear. The use of the mass media for Information, 

education and communication (IEC) has been efficient in disseminating family planning.  

 

4. PAST AND PRESENT DEMOGRAPHIC TRENDS 

 

Trend in total fertility rate (TFR) in Nigeria shows that fertility has declined gradually and 

stabilized above 5 per woman. TFR in Nigeria was 7.4 per woman in 1983-1986 and 5.7 in 1999-

2003 suggesting a decrease by twenty-three percent. United Nations statistics suggest a TFR of 

3.4 between 2020-2025 and is expected to reach replacement between 2045-2050  (United 

Nations 2000).  Currently, the Nigeria population growth rate has declined from three percent in 

1988 to two and half percent in 2009 (Population Reference Bureau, 2009). While there are 

evidence of decrease in TFR and population growth rate, it is unknown if the factors that produce 

the decline are consistent.  

The Ability of a woman to take charge of  her fertility and contraceptive method partly 

depend on her empowerment status and self-image. Low status of Muslim women prevent them 

from obtaining education and good jobs (Sundquist 2008). Hence their lives are circumscribed 

with increased desire for large family size.   The use of modern contraceptives has been 

increasing gradually from about four percent in early 1980, twelve percent in 1996 and seventeen 

percent in 2003 (WFS 1981/2; UNFPA 1996; NDHS 2003). There are regional differentials in 

the use of modern contraceptives. Data show that in 1990, use of any method of contraceptive 

was two percent in the North and twelve percent in the South with corresponding TFR of 6.6 in 

the North and 5.5 in the south (NDHS 1990).  Level of education and economic independence 

encourage women’s  self-esteem. Studies have shown that the use of contraceptives correlates 

positively with educational attainment (NDHS 2003). For instance among women with no 

education and higher education the use of any modern method increased by two percent and 

twenty-two percent respectively (NDHS 2003). Even the traditional methods increased with level 

of education, slightly below two percent for women with no education to fifteen percent for those 

with higher education. Studies have shown that the tendency to use contraceptive increases with 

the number of living children (NDHS 2003). Most economically advantaged women are four 

times likely to use contraceptives compared to the least advantaged (NDHS 2003).   

Before extending the past into the future, there is need to examine the present changes taking 

place in term of FP in the northern Nigeria. There is a recent evidence of increased contraceptive 

use in Muslim-dominated northern Nigeria. Community Participation for Action in the Social 

Sector Project (COMPASS) funded by USAID is helping women to avoid unwanted and often 

high-risk pregnancies. COMPASS is persistently breaking through cultural and religious beliefs 

which have long discouraged millions of men and women from accessing mainstream family 

planning services.  Islamic leaders in conservative, Muslim-dominated northern Nigeria, 

particularly Kano, had long opposed the use of contraceptives, but the outreach groups like 

COMPASS is helping to break down the barrier. Evaluation conducted in all five COMPASS-

supported states showed that contraceptive use increased from nine percent to thirty-two percent 

between 2005 and 2007; while in Nasarawa it increased from eight to twenty percent. (Costa 

2008). In addition, unreceptive Muslim Religious leaders promote and practice Family 

Planning in Nasarawa State (Costa 2008). COMPASS is a five-year integrated community-

driven project with nine implementing partners, including the Federation of Muslim Women's 
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Association and the Nigerian Medical Association. The activities of COMPASS commenced in 

Nigeria in 2004.   

The unprecedented positive attitude to FP and contraception by the Muslim world is not 

limited to Nigeria. A compendium of findings captioned “The Muslim world’s changing views 

towards family planning and contraception” by Sundquist (2008) reported that Islam was not an 

obstacle to family planning that led to reduced birth rates in the Muslim countries of Iran, Egypt, 

Morocco, Tunisia and Bangladesh. Furthermore, conservative Islamic nation of Pakistan, 

mosques distribute contraceptives and literature to spread the importance of family planning and 

safe sex. Muslim leaders of Indonesia have acceptable voluntary sterilization as a form of 

contraception. Muslim clerics in the Philippines and the Grand Mufti of Egypt have admitted the 

relevance of family planning.  Demographic and Social Statistics unit of the U.N., Statistical 

Division of December 2007 found that Arab birth rates are dropping dramatically, and that the 

number of births among women under the age of 20 is dropping even more sharply. The Total 

Fertility Rates (TFRs) of some Arab countries, notably Tunisia, the United Arab Emirates, 

Bahrain, Kuwait and Lebanon are either below or very close to the stability level of 2.1 children 

per woman.  

The fertility rate of below 2.1 is a caution on the use of contraception. In Europe, fertility has 

fallen below replacement levels. Unfortunately, the fertility declining did not stop even below 

the replacement levels. Below replacement fertility in Europe has resulted in an age structure 

with fewer children, leading to fewer women entering reproductive age in future (Lutz, O’Neill 

& Scherbov 2003). Contraception while it regulates fertility is the salient cause of population 

ageing. Institute for Family Policy says that Spain, with one of the western world's lowest birth 

rates and a high average life expectancy, is now the most rapidly aging country in the European 

Union (White 2009).The Institute's head, Eduardo Hertfelder, reported that the government's 

"dreadful" contraceptive policies are having a "catastrophic effect." This is unexpected 

development that raises a potential fear of family extinction and is of great concern to 

demographers. It is not clear what the demographic state in Europe would be in future, but 

demographers are increasingly warning that the prospect of population recovery is remote.  

 

5. PROSPECTS OF CONTRACEPTIVE USE AND FERTILITY DECLINE 

 

Trends in the indicators of current use of contraceptive, intention to use by non users, husband 

approval of family planning (FP), respondent’s approval of family planning, Discussed FP with 

partner, ideal number of children and desire for more children were examined. Average number 

of children ever born and contraceptive use by background was examined.  

 

5.1 Current Use of Modern Contraceptive 

 

The use of modern contraceptives is shown in figure 1. Muslim women in Nigeria that use 

modern contraceptive methods have increased over time for the age groups 20-24 and 25-29. The 

trend among women aged 30-49 did not show consistent increase over time. The dramatic 

increase use of modern contraceptives among the younger women may have declining effect on 

fertility in future. This is consistent with the postulation of Caldwell et al. (1992) that the first 

group to adopt contraceptive use will be the young women in attempt to avoid pregnancy and 

expulsion from school. 
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Figure 1: Use of modern contraceptives by Muslim women in Nigeria 1990-2003 

 

5.2 Women with No Intention To Use Modern Contraceptive 

 

The percentage of all women who do not intend to use modern contraceptive has remained stable 

at seventy percent from 1990 to 2003, figure 2. The percentage of women who do not intend to 

use contraceptives increases gradually from the age group 30-34. The trend of no intention to use 

modern contraceptive is an indication that no major changes have occurred in demand for FP 

over time.    

 

 
Figure 2: Muslim women who have no intention to use modern contraceptive in Nigeria  
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5.3 Husband’s Approval of Family Planning (FP) 

 

The approval of FP by the husband may promote the adoption by the wives. Figure 3 shows the 

trend in disapproval of  FP by the husbands. There is no consistent increasing trend over time. 

However over fifty percent of men did not approve FP in 2003. This is a true reflection of the 

trend in the use of modern contraceptive. The husbands of women aged 20-24 and 25-29 show 

lowest resistance to FP in 2003. The lowest resistance corresponds to the higher use of modern 

contraceptives by the women. Husband disapproval of FP decreased by ten percent among all 

women from 1990-1999. However, the resistance increased by eighteen percent between 1999 

and 2003.   

 

5.4 Respondent’s Approval of Family Planning (FP) 

 

Over fifty percent all respondents disapprove FP in 2003, figure 4. Disapproval of FP by the 

women decreased between 1990 and 1999 by twenty-five percent, and increased by twenty-one 

percent from 1999 to 2003. Disapproval of FP increased progressively for women age 40-44 and 

45-49. Trends in disapproval of FP are similar for the husband and the respondents. 

 

5.5 Discussion of FP with Partner 

 

Spousal discussion about FP may create a platform for negotiating the family Size and other 

things that will favour the woman reproductive health. However, over eight-one percent of all 

women have never discussed FP with their Partners since 1990 to 2003, figure 5. Women of age 

group 15-20 rank highest by eight-nine percent while 25-29 ages rank lowest by seventy-four 

percent in 2003. About eighty-five percent and eighty-four percent of women aged 40-44 and 45-

49 respectively have never discussed FP with their partners. Absence of discussion may suggest 

absolute lack of interest FP.  

 
Figure 3: Husband of Muslim women who did not approve FP in Nigeria 1999-2003. 
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Figure 4: Muslim women who did not approve FP in Nigeria 1999-2003 

 

 
Figure 5: Muslim women who never discussed FP with their partners in Nigeria 1999-2003 

 

5.6 Ideal Number of Children 

 

Table 1 shows the response of Muslim women in Nigerian on what they consider to be ideal 
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significantly over time. This show that women are becoming clearer on the number of children 

they want. The general trend supports large family size. The percentage of women that consider 

four children as Ideal is consistently greater than those that opted for five. This may suggest that 

women prefer equal number of male and female children. 

 

 

Table 1: Ideal number of children by Muslim women in 

Nigeria 1999-2003 

Ideal number of children  1990 1999 2003 

1 0.1 0.2 0.1 

2 0.6 1.2 1 

3 1.3 2.3 2.3 

4 7.3 11.3 9.3 

5 4.3 9.1 8.1 

6+ 12.5 48.1 62 

Population size (N) 4269 3620 3601 

 

5.7 Desire For Children By The Number of Living Children  

 

Table 2 shows the proportion of Muslim women that want no more children by the number of 

living children in Nigeria. The desire to have no more children increases with increasing number 

of living children. The percentage of women with eight children and above who wants no more 

children has stabilized at forty-three percent. The general trend suggests that Muslim women 

want more children. This may support negative attitude towards contraceptive use adoption.  

 

 

Table 2: Distribution of Muslim women aged 15-49 who want no more children by number of 

living children 

Number of Living 

children  1990 1999 2003 

0 1.3 1.6 1.1 

1 3.8 1.4 0.9 

2 4.5 3.8 3.7 

3 6.9 10.3 6.7 

4 12.9 15 15.2 

5 17.5 22 22.7 

6 29.5 36.1 27.1 

7 33.6 32 32.6 

8+ 43.2 41.7 42.9 

Total 9.9  11.3  10.1  

Population size (N) 4269 3620 3601 
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5.8 Fertility and Contraceptives’ Use by Background Among the Muslim Women in Nigeria 

 

Table 3 shows Fertility and contraceptive use by background.  Average number of children born 

by the urban women did not change over time. However, contraceptive use increased from 6.2 

percent in 1990 to 8.2 percent in 2003. Average number of children born in rural area was higher 

by one compared to urban women. The use of modern contraceptive has increased from 1.1 

percent in 1990 to 2.7 percent in 2003 among the rural women. The difference in contraceptive 

use between urban and rural women has remained constant at five percent over time.  

Average number of children ever born decreases with higher educational attainment. The 

average number of children born has remained consistent at four for women with no education 

and three for those with primary over time. Women with secondary have an average of one child 

while those with higher education have an average number of two children.  The use of modern 

contraceptive has increased from 1.3 percent in 1990 to 2.1 percent in 2003 for women with no 

education. Contraceptive use has increased from 6.2 percent in 1990 to 7.8 percent in 2003 

among women with primary. Contraceptive use has increased by three percent between 1990 and 

2003 among women with secondary education. However increase in contraceptive use was 

associated with increase in average children among those with secondary education.  The use of 

contraceptive has declined by three percent among women with higher education between 1990 

and 2003. The cause of the decline is not clear from the data. The average number of children 

ever born decreases with increasing affluence. The poorest echelon has one child higher than the 

middle class women. The richest has an average of two children. Contraceptive use increases 

with the level of affluence. The trend shows that increased contraceptive use is associated with 

low fertility. In summary average number of children ever born increased by one while 

contraceptive use increased by two percent between 1990 and 2003. There is consistent 

increasing trend on average number of children ever born in some of the background categories. 

However contraceptive use did not show consistent trend in most of these categories.    

 

Table 3: Fertility and contraceptive use by background 

  Average children ever born Modern Contraceptive use  

Background 1990 1999 2003 
 

1990 1999 2003 

Residence 
       Urban 2.9 3 3.2 

 
6.2 8.3 8.2 

Rural 3.5 3.2 3.8 
 

1.1 2 2.7 

Education 
       No education 3.7 3.7 4.3 

 
1.3 1.7 2.1 

Primary 2.7 2.7 3.1 
 

6.6 8.4 7.8 

Secondary 1.1 1.3 1.6 
 

8.2 7.4 11.2 

Higher 1.7 2 1.7 
 

25 22.2 21.6 

Wealth Index 
       Poorest 

  
4.2 

   
1.2 

Poorer 
  

4.1 
   

1.8 

Middle 
  

3.6 
   

3.6 

Richer 
  

3.3 
   

7.3 

Richest 
  

2.4 
   

13.8 

Total 3.3 3.2 3.6 
 

2.9 3.9 4.9 
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6. COMMENTS AND CONCLUSION 
 

The ethics of Nigerian Muslim in support of no fertility regulation is unequivocal which does not 

give bright future to contraceptives use. Although Nigeria in general value children for many 

reasons, but the pride the Muslims take on children seem to be exceptional.  In Hausaland, 

children are viewed gift and mortals have no powers to limit the number. Although religion is 

playing critical role in negative attitude to family planning, the desire for children among the 

women cannot be ruled out. Consistent with the previous reports, positive attitude to family 

planning increases with the number of living children (Duze & Mohammed 2006). The infant 

mortality rate is 100 per 1000 in Nigeria (Population Reference Bureau 2007). This rate is among 

the highest in the Sub Saharan Africa. Nigerians take pride in children and at the same it is a 

highly volatile state. Tribal and ethnic clashes are high and contribute reasonably to 

depopulation.  There is high internal and external migration in which lives are lost as a result of 

illegal crossing of border. Hence, families are always in dread of death and extinction of lineage 

because no one accounts for those that left. The study shows that tendency to stop childbearing 

increases with the number of living children. This may suggest that the low contraceptive use 

and increasing no intention to use contraceptives may be partly due to low infant survival rate. 

The trend in the indicators may suggest that no reasonable changes have occurred in overall 

health and socioeconomic states of Muslim women in Nigeria. We posit that opting for large 

number of children as a means of ensuring continuity of lineage in the midst of high mortality 

vices may hinder adoption of contraception.  

Our findings show that women are following suit with their husbands in disapproving FP. 

This may imply that both spouse and respondent have no place for FP. Disapproval of FP by 

both Spouse and respondents is an indication of general ignorance and in particular vitiation of 

reproductive rights of the women. Studies have shown that women stayed away from FP to 

please their husbands (Jinadu and Ajuwon 1997). The decision never to use contraception may 

be self denial of the women to maintain peace in the family as the culture and tradition demands. 

It is not the intention of the present study to incite women against their husband. However 

obfuscation of reproductive and sexual rights on the ground that it promotes immorality is 

detrimental to the life of women. Devoted Muslim men reject family planning on the ground that 

Islamic tenets forbid it are unaware of the stand of Islam on contraceptives and liberal 

interpretations of reproductive rights. There is an allusion that FP can lead to infertility or even 

death. Thus, the overall disapproval of FP observed in the present study is attributed to ignorance 

and lack of reproductive right knowledge. We suggest that FP service provider should integrate 

correction of overwhelming negative impression on FP which has been inculcated over several 

decades. However, we cannot rule out patriarchal clout of men on the decision taken by the 

women on FP.   

The extreme neglected spousal discussion observed in the present study is in agreement with 

the high level disapproval of FP. The trend would have been considered as an effect of perennial 

gender inequality if considerable number of women approves FP or have raised the discussion. 

The extent to which culture and tradition may have discouraged spousal discussion is not known. 

A previous study has reported increase in spousal discussion on FP (Oladosu 2001) which is in 

conflict with the present findings. However, the previous studies examined spousal discussion at 

national level whereas the present study considered spousal discussion among Muslim women. 

Spousal discussion is milestone to adoption of FP. However, chances of FP adoption through the 

spousal communication for the Muslim women are highly negligible.    
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Findings of the study show that residence, education and wealth index play role on 

contraceptive use and average number of children ever born. It is not unexpected that the 

percentage of women using modern contraceptive in urban is greater compared to rural areas. 

However, the differential is quite unexpected considering the long time preference given to the 

urban in terms of medical services (Pearce 1980; Duze & Mohammed 2006).  The difference in 

average number of children ever born does not reflect a good impact of contraceptive use on 

fertility. Consistent with previous reports, women who spent more years schooling has lower 

fertility than those with no or less education (Ashurt et. al. 1984). In addition, attitude to adopt 

contraceptive use increases with level of education and urbanization (Rodriguez and Aravena 

1991) as well as wealth index. However, increase in contraceptive use does not show consistence 

with the average number of children ever born. For instance, the contraceptive prevalence rate 

for higher education was over twenty percent while that of secondary education was eleven 

percent, but the average number of children was the same. When we examine what proportion 

each category represents in the entire population as shown in Appendix, women with secondary 

are constantly higher than those with higher education. It is expected that average number of 

children born by women with higher education should be lower than that of women with 

secondary education due to differentials in contraceptive prevalence rate. However, this is not 

the case. It implies average number of children ever born shows inverse association with higher 

education and contraceptive use. The increasing trend in contraceptive prevalence by wealth 

index may be attributed to the ability to afford compatible method of contraception. Studies have 

shown that women abstain from contraceptive due to side effects. Modern contraceptive method 

has been tagged with infertility and death in the northern Nigeria. It requires patience and 

practical evidence to convince the poor to use it. Unfortunately, the rural, uneducated, and 

economically disadvantaged women constitute the bulk of the reproductive women. Their states 

have made them complacent to have large family size as security and pride. Possibility of the 

disadvantaged women seeing contraception as a strategy of elimination may not be ruled out, 

since it has been purported to cause death and infertility. In general, the increasing trend of 

average number of children ever born may suggest that Muslim population is not at risk of 

population ageing in Nigeria. 

Desire for more children observed among the rural and poor women is not unexpected. The 

edifice of survival for rural, poor, and uneducated women in Nigeria is through subsistence 

agriculture where labour intensive is mandatory. Nigeria is a rural based nation with about eighty 

percent of the population engages in subsistence agriculture where children are productive agent. 

Northern part of Nigeria is predominantly Muslim is the food basket on the nation, has been 

backward in terms of education. Hence, programs that centers on providing contraception 

without education and poverty alleviation and liberation of women may have difficulty in 

accomplishing the purpose.  

From all indication, limited commitment to Contraception is still persisting among the 

Muslim women in Nigeria through the instruments of cultural and traditional values and desire 

for large family size. Therefore, population ageing among the Nigeria Muslims may not be very 

imminent. Education and affluence are relevant for the success of FP among Muslim women. 

However, the proportions of educated and affluent women are still negligible to elicit reasonable 

increase on contraceptive use. Since there is gradual transformation in education among the 

women, the future of FP appears promising.        
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ABSTRACT 

 

In risk theory, the risk process is a very important model for understanding how the capital or 

surplus of an insurance company evolves over time. By adding to the previous surplus the 

current premium flow and deducting the claims made during the period, the process gives the 

value of the capital that is available to the insurer at each point in time. Each period is tracked so 

that the surplus never gets below zero because if it does, it provides an indication of ruin, that is, 

the company is in a position of negative cash flow. In this paper we describe an approximation, 

known as De Vylder's method, to calculate the ruin probability. We find the solution for ruin 

probability with assuming Lundberg's inequality applies. All that is required to apply De 

Vylder's approximation is that the first three moments of the individual claim amount 

distribution exist. In situation when the adjustment coefficient exists, the method provides good 

approximations when ruin probabilities are small. 

 

Keywords: risk process, ruin probability; Lundberg’s inequality; survival probability; De 

Vylder's method. 

 

1. INTRODUCTION 

 

Insurance companies are in the business of risks. They exist to pool together risks faced by 

individuals or companies who in the event of a loss are compensated by the insurer to reduce the 

financial burden. In its simplest form, when certain events occur, an insurance contract will 

provide the policyholder the right to claim all or a portion of the loss. In exchange for this 
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entitlement, the policyholder pays a specified amount called the premium and the insurer is 

obligated to honor its promises when they come due (Valdez and Mo, 2002). 

In this paper, we simplify a real life insurance operation by assuming that the insurer starts 

with some non-negative amount of money, collects premiums, and pays claims as they occur. 

Our model of an insurance surplus process is then deemed to have three components: initial 

surplus (or surplus at time zero), premiums received and claims paid. If the insurer's surplus falls 

at zero or below, we say that ruin occurs. 

The aim of this work is to approximate a ruin probability in risk process. We start in Section 

2 by describing a risk process and in Section 3 we give some definitions of ruin probability. We 

then consider the adjustment coefficient in Section 4 and prove Lundberg's inequality in Section 

5. In Section 6 we derive a survival probability and finally in Section 7 we use De Vylder's 

method to approximate the ruin probability. 

 

2. RISK PROCESS 

 

In the classical risk process, an insurer's surplus at a fixed time 0t  is determined by three 

quantities: the amount of surplus at time 0, the amount of premium income received up to time t, 

and the amount of claims paid out up to time t. The only one of these which is random is claims 

outgo, so we start by describing the aggregate claim process, which we denote by    0ttS . 

Let    0ttN be a counting process for the number of claims, so that for a fixed value 0t , 

the random variable  tN denotes the number of claims that occur in the fixed time interval  t,0 . 

In the classical risk process, it is assumed that    0ttN is a Poisson process (Dickson, 2005). 

Individual claim amounts are modelled as a sequence of independent and identically distributed 

random variables  
1iiX , so that iX denotes the amount of the ith claim. We can then say that 

the aggregate claim amount up to time  tSt, , is  

 

 
 



tN

i
iXtS

1

 

 

with the understanding that   0tS when   0tN . The aggregate claim process    0ttS is then a 

compound Poisson process (Dickson, 2005). 

 

We can now describe the risk process, denote by    0ttU , as 

 

   tSctutU                                   (2.1) 

 

where u is the insurer's surplus at time 0 and c is the insurer's rate of premium income per unit 

time, which we assume to be received continuously. A realization of this risk process is depicted 

in Figure 1. 

Throughout this section we denote the distribution function of 1X by F and we assume that 

 0 0F  so that all claim amounts are positive. For simplicity, we assume that this distribution is 

continuous with density function f and the kth moment of 1X is denoted by km . Whenever the 
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moment generating function of 1X  exists, there exists some quantity  0, , such that  rM x  

is finite for all r with 

  


rM x
r

lim


 

As an illustration, suppose that X1 is exponentially distributed with parameter  . Then  

   
0 0

for
r xxx x

xM r e e dx e dx r
r

 
  



      


   and 

  


rM x
r
lim



 

so that in this case,   is  . 

 
 

    
Figure 1. A realization of a risk process 

 
 

3. RUIN PROBABILITY 

 

The probability of ruin in infinite time, also known as the ultimate ruin probability, is defined as 

    Pr 0 for some 0u U t t    . In words,  u  is the probability that the insurer's surplus falls 

below zero at some time in the future, that is that claims outgo exceeds the initial surplus plus 

premium income. This is a probability of ruin in continuous time, and we can also define a 

discrete time ultimate ruin probability as     Pr 0 for some , ,2 ,3 ,...r U U t t t r r r    . Thus, under 

this definition, ruin occurs only if the surplus is less than zero at one of the time pints ,...3,2, rrr  

If ruin occurs under the discrete time definition, it must also occur under the continuous time 

definition. However, the opposite is not true. To see this, we consider a realization of a surplus 

process which, for some integer n , has   0nrU and    01  rnU with   0U for some 

  rnnr 1,  . If   0tU for all t outside the interval   rnnr 1,  , then ruin occurs under the 

continuous time definition. Thus    uur   . However, as r becomes small, so that we are 

'checking' the surplus level very frequently, then  r u  should be a good approximation to  u . 

We define the finite time ruin probability  tu, by     , Pr 0 for some ,0u t U s s s t     . Thus, 

 tu, is the probability that the insurer's surplus falls below zero in the finite time interval  0,t . 

We can also define a discrete time ruin probability in finite time as 

    , Pr 0 for some ,0r u t U s s s t      

 

time, t 

surplus 

U(t) 
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where t  is an integer multiple of r . The arguments used above to explain why    uUr   also 

apply in finite time to give    tutur ,,   , and if r is small then  tur , should be a good 

approximation to  ,u t (Dickson, 2005; Burnecki and Mista, 2007). 

In this work we concentrate mostly on the ultimate ruin probability and we assume that 

1mc  , so that the premium income exceeds the expected aggregate claim amount per unit of 

time. We can find the expected value of  S t as follows: 

           


0

Pr
k

ktNktNtSEtSE  

because   0tS when   0N t  , we have 

         
1 1 1 1

Pr Pr
k k

i i
k i k i

E S t E X N t k N t k E X N t k
 

   

   
              

     

and 

         1 1 1 1
1 1

Pr Pr
k k

E S t km N t k m k N t k m E N t m t
 

 

              

because  iX and   N t are independent. From equation (2.1) we obtain   1E U t u ct m t      . 

If the condition 1c m , known as the net profit condition, does not hold, then   1u  for all 

0u  . It is often convenient to write   11c m   , so that  is the premium loading factor. 

 

4. THE ADJUSTMENT COEFFICIENT 

 

The adjustment coefficient, which we denote by R, gives a measure of risk for a surplus process. 

It takes account of two factors in the surplus process: aggregate claims and premium income. For 

the classical risk process, the adjustment coefficient is defined to be the unique positive root of 

 

          0XM r cr          (4.1) 

so that R is given by 

 

 XcR M R   .          (4.2) 

 

The root is illustrated in Figure 2. By writing c as   11 m  , we can see that R is independent of 

the Poisson parameter  , and we discuss this point further in the next section. To see that there is 

a unique positive root of equation (4.1) we consider the function 

   Xg r M r cr    . 

First note that  0 0g  . Second, 

   X

d d
g r M r c

dr dr
   

so that   0 1r

d
g r m c

dr
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Figure 2. The adjustment coefficient 

 

 

and hence g is a decreasing function at zero as we have assumed that 1c m . Next we note that 

 

       
2 2 2

2

02 2 2
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X
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so that if g has a turning point, then the function attains its minimum at that turning point. 

Finally, we note that 

 

                                          lim
r

g r
 

                         (4.3) 

 

where  is as defined in Section 2, so that as g is decreasing at zero, the function must have a 

unique turning point, and hence there is a unique positive number R such that   0g R  . To see 

that equation (4.3) is true, we consider separately the cases   and   . In the former case, 

equation (4.3) clearly holds. In the latter case, we note that since all claim amounts are positive, 

there exist a positive number  and a probability p such that 

 1Pr 0X p    

so that 

     0

rx xx r
XM r e f x dx e f x dx e p



 
    . 

and hence 

   lim lim
r

r r

g r e p cr 
 

     

 

5. LUNDBERG'S INEQUALITY 

 

For the classical risk process Lundberg's inequality states that 

 

    expu Ru              (5.1) 

λMX(R) 

λ+cR 

λ 

t R 
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where R is the adjustment coefficient (Dickson, 2005; Asmussen, 2000). In many cases the right-

hand side of (5.1) is a good approximation of  u (Mammitzsch, 1986). We can prove this 

result by an inductive argument. We define  n u to be the probability of ruin at or before the 

nth claim. It is then sufficient to show that    expn u Ru    for n =1, 2, 3,..., since 

   lim n
n

u u 


 . We first must show that the result is true when n =1. We consider the time and 

the amount of the first claim. Suppose that the first ruin occurs at time 0t  and that the amount 

of this claim is x. If ruin occurs at the first claim, then x u ct   or 0u ct x   so that 

 
 

1
R u ct x

e
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Next, we assume that for a fixed value of n , where    1, expnn u Ru   . We establish an 

expression for  1n u  by considering the time and the amount of the first claim as previous step. 

If ruin occurs at or before the (n + 1)th claim, then either (1) ruin occurs at the first claim, so that 

x > u + ct, or (2) ruin does not occur at the first time, so that the surplus after payment of this 

claim, u ct x  , is non-negative, and ruin occurs from this surplus level at one of the next n 

claims. 

Since claims occur as a Poisson process (with parameter ), the distribution of the time until 

the first claim is exponential with parameter  . Hence, integrating over all possible times and 

amounts for the first claim we have 

 

       1 0 0 0

u ctt t
n nu ct

u e f x dxdt e f x u ct x dxdt    
    

 
       . 

 

The first integral represents the probability of ruin at the first claim and the second represents the 

probability that ruin does not occur at the first claim but does occur at one of the next n claims. 
Note that in probabilistic terms the surplus process 'starts over' again after payment of the first 

claim, and so the probability of ruin within n claims after payment of the first claim is just 

 n u ct x   . 

 

We now apply our inductive hypothesis to write 
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Next, we use the fact that   exp 1R u ct x    for x u ct  , so that 
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and hence 
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because the integral equals 1, and hence the proof is complete. 

 

6. SURVIVAL PROBABILITY 

 

We define    1u u   to be the probability that ruin never occurs starting from initial surplus 

u , a probability also known as the survival probability. An equation for  can be established by 

adapting the reasoning used to prove Lundberg's inequality. By considering the time and the 

amount of the first claim, we have 

 

         0 0

u cttu e f x u ct x dxdt  
                (6.1) 

 

noting that if the first claim occurs at time t , its amount must not exceed u ct , or x u ct  , 

since ruin otherwise occurs. Substituting s u ct  in equation (6.1) we have   /t s u c  and we 

get 

       /

0

1 ss u c

u
u e f x s x dxds

c


  

  
    

or 

     / /

0

su c s c

u
u e e f x s x dxds

c

 
 

   
        (6.2) 

 

We can establish an equation for  , known as an integro-differential equation, by diffrentiating 

equation (6.2), and the resulting equation can be used to derive explicit solutions for  . 

Differentiation gives 

         
2

/ /

0 02

s uu c s c

u

d
u e e f x s x dxds f x u x dx

du cc

  
  

        

 

and from equation (6.2) we have 

 

       0

ud
u u f x u x dx

du c c

 
              (6.3) 

 

As the first equation (6.3) does not appear to be a very promising route, since the function 

appears in three different places in this equation. However, by eliminating the integral term, a 
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differential equation can be created, and solved. To see how such an approach works, let us 

consider the situation when   1 xF x e   . Then we have 
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or, equivalently, 
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.

uu xd
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du c c

  
             (6.4) 

 

Differentiation of equation (6.4) yields 
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and we can write as 

 

       
2

02

uu xd d
u u u e e x dx

c du c cdu

   
     

   
 

         (6.5) 

 

The integral term in equation (6.5) is simply the integral term ini equation (6.4) multiplied by 

 . Hence, if we multiply equation (6.4) by  we have 

 

     0

uu xd
u u e e x dx
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          (6.6) 

 

Adding the resulting equation (6.6) to equation (6.5) we find that 
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d d d
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                      (6.7) 

 

This is a second order differential equation and we can find its general solution as follows. Let 

  ruu e  , we have   rud
u re

du
  and  

2
2

2

rud
u r e

du
  . Then we can write equation (6.7) as 

2 0ru rur e re
c



 

   
 

 

or     2 0r r
c



 

   
 

              (6.8) 
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The solution of equation (6.8) is 0r  or r
c



 

   
 

. Hence the general solution of equation 

(6.7) is 

    /

1 2

c u
u c c e

 


 
                             (6.9) 

 

where 1c and 2c are constants. Since Lundberg's inequality (5.1) applies, we know that and 

  0limu u  and   1limu u  . From equation (6.9) we have  
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1 2 1lim lim
c u

u u

u c c e
 


 

 

    

 

which gives 1 1c  . It then follows that   20 1 c   , that is    2 0 1 0c      , so that  
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1 0

c u
u e

 
 

 
                          (6.10) 

 

All that remains is to solve for  0 , and this can be done generally on the assumption that 

Lundberg's inequality applies. Writing 1   in equation (6.3) it follows that 
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Integrating this equation over  0, we find that 

 

               0 0 0 0
0 1 .

u
u du f x u x dxdu F u du
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Changing the order of integration in the double integral in equation (6.11), we have 
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Thus, the first two terms on the right-hand side of equation (6.11) cancel, and we find that 
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      1

0
0 1

m
F u du

c c





                      (6.12) 

 

which holds generally. We did not have to specify the form of F to prove this result, but we did 

assume that Lundbergs's inequality applies.  

 

For example, if   1 , 0xF x e x   , then 

 

     00 0
0 1 1 u u ue du e du e
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From equation (6.10), the complete solution for  is 

 

    1 exp /u c u
c


  


                       (6.13) 

 

Although this method of solution can be used for other forms of F, we do not pursue it further.  

In section 4 we see that if the premium is written as   11c m   , then the adjustment 

coefficient is independent of  . If we write   in this way in equation (6.13) then 
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independent of  . For 1  we have 
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7. APPROXIMATE CALCULATION OF RUIN PROBABILITY 

 

In this section we describe an approximation, known as De Vylder's method, to approximate the 

ruin probability. Suppose we have a classical risk process   
0t

U t


for which we wish to calculate 

the probability of ultimate ruin. We can approximate the risk process by a process   
0t

U t


 given 

by 

),(
~~)(

~
tStcutU   

 



960 

 

where the aggregate claim process    0ttS  is a compound Poisson process with parameter    

and individual claim amount distribution    1 exp , 0.F x x x    Thus, a process   
0t

U t


 has 

the following characteristics (Dickson, 2005): 

  0U u  

 the Poisson parameter is   

 the premium income per unit time is c  

 the individual claim amount distribution is    1 exp , 0.F x x x    

 

Since the individual claim amount distribution in the approximating risk process is exponential 

with parameter  , it follows that the probability of ultimate ruin for the risk process   
0t

U t


¸ is 

exp .u
c c

 




   
    
   

 

This is De Vylder's approximation to the ultimate ruin probability for the risk process   
0t

U t


. 

The parameters  , c and  are chosen by matching moments of the two risk processes. We set 
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which give 

  1 /c c m                (7.1) 

 

  2 33 /m m               (7.2) 

and 
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2
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2
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             (7.3) 

 

We give two examples to show the approximation. First, if f(x) = 4xe
-2x

, x>0 and 1.2c  , we 

have m1 = 1, m2 = 3/2 and m3 = 3. Applying the Laplace transform, we have the exact solution 

for (u): 

(u) = 1 – 0.8518 e
-0.2268u

 + 0.0185 e
-2.9399u

. 

 

By equation (7.1) - (7.3) we obtain 
27 3 53

, ,
16 2 40

c
 

     

and the approximation to  u is 

45 12
exp

53 53
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Table 1. Exact and approximate values of  u for f(x) = 4xe
-2x

, x>0 

u Exact Approximate 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 
 

0.8333 

0.6780 

0.5411 

0.4314 

0.3438 

0.2741 

0.2184 

0.1741 

0.1388 

0.1106 

0.0882 

0.0703 

0.0560 

0.0447 

0.0356 

0.0284 

0.0226 

0.0180 

0.0144 

0.0115 
 

0.8491 

0.6770 

0.5399 

0.4305 

0.3433 

0.2737 

0.2182 

0.1740 

0.1388 

0.1107 

0.0882 

0.0704 

0.0561 

0.0447 

0.0357 

0.0284 

0.0227 

0.0181 

0.0144 

0.0115 
 

 

 

Table 1 shows exact and approximate values of  u for u = 0,1,2, …, 19. Second, for f(x) = 

exp(-2x) + 1/3 exp(-2/3 x) and the loading factor is 10%, we have  

 

(u) = 1 – 0.8984 e
-0.0719u

 + 0.0107 e
-1.6857u

. 

 

The parameters in De Vylder’s approximation are 140/139~,196/125
~

,7/5~  c  and the 

numerical values are given in Table 2. We can see from these tables that the approximation is 

very good when ruin probabilities are small. 

 

8. CONCLUDING REMARKS 

 

We found the solution for  with assuming Lundberg's inequality applies. All that is required to 

apply De Vylder's approximation is that the first three moments of the individual claim amount 

distribution exist. In situation when the adjustment coefficient exists, the method provides good 

approximations when ruin probabilities are small. However the approximation is inaccurate for 

small values of u, especially u = 0. Generally, the method is not particularly accurate when the 

adjustment coefficient does not exist.  
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Table 2. Exact and approximate values of  u  for f(x) = exp(-2x) + 1/3 exp(-2/3 x) 

u Exact Approximate 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 
 

0.8877 

0.6271 

0.4377 

0.3056 

0.2133 

0.1489 

0.1039 

0.0725 

0.0506 

0.0353 

0.0247 

0.0172 

0.0120 
 

0.8993 

0.6276 

0.4380 

0.3057 

0.2133 

0.1489 

0.1039 

0.0725 

0.0506 

0.0353 

0.0246 

0.0172 

0.0120 
 

 

 

ACKNOWLEDGMENTS 

 

This work would not have been possible without the support of The Indonesian Ministry of 

National Education, Sebelas Maret University and Gadjah Mada University. In this connection 

the authors would like to express appreciation to Sebelas Maret University and Gadjah Mada 

University for giving the opportunity to present this paper in The Tenth Islamic Countries 

Conference on Statistical Sciences (ICCS-X) 2009. We also would like to thank to Directorate of 

Higher Education, The Indonesian Ministry of National Education, through Hibah Penelitian 

Sesuai Prioritas Nasional, for giving the financial support to finish our research. 

 

 

REFERENCES 

  

Asmussen S. (2000), Ruin probabilities, World Scientific Publishing Co. Pte. Ltd., Singapore. 

Burnecki K. and Mista P. (2007), Ruin Probability in Infinite Time, Technical Report, Hugo 

Steinhaus Center, www.im.pwr.wroc.pl/hugo.html. 

Dickson D.C. (2005), Insurance risk and ruin, Cambridge University Press, Cambridge. 

Mammitzsch V. (1986), A note on the adjustment coefficient in ruin theory, Insurance: 

Mathematics and Economics 5, 147-149. 

Valdez E.A. and Mo K. (2002), Ruin probability with dependent claims, Technical Report, 

University of New South Wales, Sydney, Australia. 



Proceedings of the Tenth Islamic Countries Conference on Statistical Sciences (ICCS-X), Volume II,
The Islamic Countries Society of Statistical Sciences, Lahore: Pakistan, (2010): 963–976.

PRESERVING SEMANTIC CONTENT IN TEXT MINING USING MULTIGRAMS

Yasmin H. Said and Edward J. Wegman

Department of Computational and Data Sciences
George Mason University, Fairfax, VA 22030 USA

E-mails: ysaid99@hotmail.com, ewegman@gmail.com

ABSTRACT

Text mining can be thought of as a synthesis of information retrieval, natural language pro-
cessing, and statistical data mining. The set of documents being considered can scale to
hundreds of thousands and the associated lexicon can be a million or more words. Informa-
tion retrieval often focuses on the so-called vector space model. Clearly, the vector space
model can involve very high-dimensional vector spaces. Analysis using the vector space
model is done by consideration of a term-document matrix. However, the term-document
matrix basically is a bag-of-words approach capturing little semantic content. We have been
exploring bigrams and trigrams as a method for capturing some semantic content and gen-
eralizing the term-document matrix to a bigram-document matrix. The cardinality of the
set of bigrams is in general not as big as

(
n
2

)
; it is nonetheless usually considerably larger

than n, where n is the number of words in the lexicon.

1. INTRODUCTION

Text mining capabilities have dramatically improved in recent years, but have been princi-
pally focused on the English language. Manning and Schütze (1999), Berry (2003), Feldman
and Sanger (2007), Weiss et al. (2005), Solka (2008), and Rao, Wegman and Solka (2006)
are recent discussions of text mining and related methodologies. Text mining as a general
field can be thought of as a synthesis of information retrieval, natural language processing,
and traditional data mining.

We would like to demonstrate some ideas on text mining. Text mining operations often
deal with very high dimensional vector spaces and we would like to provide some sense of
the dimensionality involved. We would like explain by placing text mining as we understand
it in the framework of related disciplines: information retrieval, natural language processing,
and data mining. Then the focus of this paper is on a tool we have been using for several
years, namely bigrams and related vector space ideas such as the term-document and bigram-
document matrices. Finally, we would like to illustrate the dimensionality of the application
to text mining with a corpus of nearly 15,863 documents.

The focus of information retrieval can generally be described as searching for documents.
But, with somewhat more precision, it is fair to say that information retrieval also includes

963



searching for information within documents and searching for metadata that describe docu-
ments. The search can be in standalone relational databases or hypertext-related databases
such as the World Wide Web. Common search engines function with either a set-theoretic
Boolean model of the document corpus, or a vector space model, or within a probabilistic
Bayesian framework. Although usually information retrieval deals with text documents, it
can also deal with imagery, video, audio, and other multimedia types.

1.1 Natural Language Processing

Natural languages have four key elements: morphology, syntax, semantics, and lexicon. Mor-
phology refers to the grammar of word forms, for example, how nouns are made plural, or
masculine or feminine, how verbs are conjugated and so on. Syntax refers to the grammar
of word combinations, for example, where adjectives are placed relative to the nouns they
modify, where verbs are placed in the sentence, how a sentence is modified to become inter-
rogative or imperative, and so on. Semantics refers to the meaning of a word or a sentence,
and, of course, lexicon refers to the set of words used in a language. Generally, natural lan-
guage processing is a difficult discipline because natural languages have many ambiguities.
For example, the sentence “Time flies like an arrow.” could be interpreted as “Time passes
speedily like an arrow passes speedily.” or it could be interpreted to mean “Measure the
speed of a fly like you would measure the speed of an arrow.” In the first interpretation,
“time” is a noun and “flies” is a verb. In the second, “time” is a verb and “flies” is a
noun. There is ambiguity in the sense that these two words could be either a noun or a verb
depending on interpretation. There is an obvious ambiguity of meaning as well.

1.2 Text Mining Tasks

Within text mining, we can identify six major classes of tasks. Text classification focuses
on assigning a new document to one of several predetermined classes. This is also known
as supervised learning in the machine learning literature. Text clustering focuses on deter-
mining natural clusters of documents within a corpus and is also known as unsupervised
learning. Text summarization is extracting a summary automatically from a document and
uses elements of syntax and semantics. This is, by the way, an area of considerable inter-
est to the military for discovering relevant documents in open source literature. Author
identification focuses on determining the author of a document where the author is either
unknown or authorship is disputed. This task not only depends on the syntax and semantics
found in the document, but also the characterizations of style of the document. Perhaps the
most difficult task is automatic translation, which includes the morphology, the syntax, the
semantics, and the lexicon of two languages. One reason translation is so difficult is that
idiomatic expressions are hard to recognize and a literal translation may not make sense.
Using multi-grams or strings of words to recognize idioms is a fruitful way to augment tra-
ditional translation techniques and one reason we have focused on these structures. Cross
corpus discovery refers to comparison of documents for two or more corpora usually with
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the idea of finding similar or related documents.

2. TEXT MINING BASICS

2.1 Preprocessing

Before launching on processing documents within a corpus, it is usually advisable to do
some preprocessing. These preprocessing steps usually reduce the size of the lexicon while
preserving the semantic content of the documents. Two tasks are usually undertaken: de-
noising and stemming. Denoising usually refers to removal of stopper words that have little
semantic content. Words such as the, an, and, of, by, that, and other articles, conjunctions,
or prepositions are likely candidates for stopper words. These are often just taken from a
predetermined list. However, the stopper words may be corpus dependent. For example, in
a corpus consisting of mathematical documents, words like “theorem” and “proof” may be
treated as stopper words. A way of automatically determining stopper words is to calculate
the so-called Term Frequency Log Inverse Document Frequency. This measure down weights
a word if it occurs infrequently in all of the documents of the corpus and also down weights a
word that occurs in almost every document of the corpus. By thresholding on the so-called
TFIDF measure, one can automatically remove stopper words that are corpus dependent.
Stemming is the other preprocessing step. This procedure removes suffixes, prefixes and
infixes and is an attempt to replace words with their root. The example here replaces wake,
waking, awake, woke with wake. Of course, there are perils with automated procedures as
well. For example, browse, browsing, browsed, could conceivably be replaced with brows, so
that a leisurely afternoon in a bookstore could become facial hair.

2.2 Bigrams and Trigrams

We like to use bigrams and trigrams and more generally multi-grams rather than just single
words. The reason is that multi-grams in general capture word combinations that involve
syntactic and semantic structures that are not captured by single words. A bigram is a word
pair where the order of the words is preserved. The first word is called the reference word
and the second is the neighbor word. Interestingly, we adapted this language from image
processing applications where pixel pairs are characterized as reference pixels and neighbor
pixels. A trigram is analogously a word triple where the order is preserved.

Consider the sentence, “Hell hath no fury like a woman scorned.” The “a” is a stopper
word. It is also possible that we might consider “no” a stopper word, although in this case
we will not. The denoised version is “Hell hath no fury like woman scorned.” Of course
“hath” is an archaic form of “has” and “scorned” stems to “scorn.” It is also conceivable
that “woman” could be stemmed to “man.” If this is done, the meaning would change and
so we would not want to stem this way. The stemmed and denoised version is “Hell has no
fury like woman scorn.” The bigrams of the stemmed and denoised sentence are “hell has,”
“has no,” “no fury,” “fury like,” “like woman,” “woman scorn,” and “scorn .” Note also that
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Table 1:

Sentence Hell hath no fury like a woman scorned.
Denoised Sentence Hell hath no fury like woman scorned.
Stemmed Sentence Hell has no fury like woman scorn.
Bigrams Hell has, has no, no fury, fury like, like woman,

woman scorn, scorn .
Note The “.” and any other sentence ending punctuation

is treated as a word.

“.” “?” “!” “;” and other sentence ending punctuations are stemmed to “.” and treated like
a word in the bigram computation.

2.3 Bigram Proximity Matrix

The bigram proximity matrix of a document is a mathematical object representing the
document. This representation has some claim to capturing the semantic content of the
document because it captures noun-verb, adjective-noun, verb-adverb, and verb-object pairs
as well as other word pairs that have semantic as well as syntactic meaning. Because the
Bigram Proximity Matrices are mathematical objects in a vector space we can create metrics
on them and thus measure similarity between bigram proximity matrices and infer how
similar their corresponding documents are.

This idea was explored by Dr. Angel Martinez in his 2002 dissertation, Martinez (2002),
and several subsequent papers, Martinez and Wegman (2002, 2003), Martinez et al. (2004,
2008). In a way similar to the Bigram Proximity Matrix, trigrams can be arranged in an
analogous three-dimensional structure and distances also measured. If the cardinality of the
stemmed and denoised lexicon is n, the number of bigrams is in general much less than(
n
2

)
, but is usually considerably larger than n. The bigram proximity matrix is usually very

sparse.
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Table 2:

. fury has hell like no scorn woman
.
fury 1
has 1
hell 1
like 1
no 1
scorn 1
woman 1

We can construct a bigram proximity matrix, usually abbreviated BPM. The rows cor-
respond to the reference word and the columns correspond to the neighbor word. The rows
and columns are usually arranged alphabetically according to the lexicon of the whole cor-
pus and an entry is made corresponding to each bigram. The entries may be binary, one if
the bigram appears and zero otherwise or they may be frequency counts of the bigram. Of
course, we would compute the matrix for a whole document, not just a sentence. In the ex-
ample given in Table 2, for simplicity, the zeros are omitted. The matrix is normally square
with dimension in rows and columns equal to the cardinality of the stemmed and denoised
lexicon. In the case of some document sets, the stemmed and denoised lexicon could be as
large as 100,000 terms and the number of bigrams could easily approach 1,000,000 or more.

2.4 Similarity and Distance Measure Complexities

In order to define Similarity Measures and Pseudometrics on the BPM following Martinez
(2002), we use the Ochiai-Cosine measure in the case of the BPM:

S(X, Y ) =
|X and Y |√

(|X||Y |
.

We consider here only binary matrices. Here X is the BPM for Article X and Y is the
BPM for Article Y . |X andY | is the number of 1’s that X and Y have in common and,
of course, |X| is the number of 1’s in matrix X and |Y | is the number of 1’s in matrix
Y . Clearly if X = Y , then S(X, Y ) = 1 and if X and Y have no common bigrams, then
S(X, Y ) = 0. S(X, Y ) is the binary equivalent of the cosine similarity measure and is
essentially a normalized version of the dot product of the angle between vectorized X and
vectorized Y .
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Consider the Euclidean distance between normalized X and Y .

‖X − Y ‖2 =

√√√√ n∑
i=1

(Xi − Yi)2 (1)

=

√√√√ n∑
i=1

X2
i − 2

n∑
i=1

XiYi +
n∑

i=1

Y 2
i (2)

=

√√√√[2− 2
n∑

i=1

XiYi]. (3)

Because
∑n

i=1 X
2
i and

∑n
i=1 Y

2
i are normalized and binary, they both sum to 1. Thus, the

Euclidean distance between normalized vectors X and Y is inversely related to the Ochiai-
Cosine similarity measure. This motivates us to use S(X, Y ) to form a metric by:

d(X, Y ) =
√

[2− 2S(X, Y )].

Let x be the set of word pairs or triplets in Article X. Let y be the set of word pairs or
triplets in Article Y . Then Article X and Article Y can be described by the intersection of
the sets x and y. The sets x and y are represented as hash tables where the key, word pair
or triplet, maps to the number of occurrences in the article. The intersection of x and y can
then be computed by the number of keys in x that are also in y. The contains Key function
being used is close to O(1) so the computation of X and Y should be close to O(size of x) or
for all keys in x check if y contains key. The value of |Article X||Article Y | is |size of x||size
of y|.

2.5 Interpoint Distance Complexity Issues

Let n be the number of documents in the corpus. The interpoint distance matrix involves
n(n−1)

2
comparisons, which results in O(n2) operations. It will pay to make each of these

“comparisons” as efficient as possible.

3. VECTOR SPACE METHODS

The classic structure in vector space text mining methods is a term-document matrix, where
the rows correspond to terms and columns correspond to documents. The entries may be
binary or frequency counts. A simple and obvious generalization is a bigram-document
matrix where rows correspond to bigrams, columns to documents, and again entries are
either binary or frequency counts. As with the bigram proximity matrix, these matrices are
usually very sparse.
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Figure 1: Bigram-Document Matrix for the First 50 documents.

The example that we report here is based on the full set of 15,863 documents. In order
to illustrate the dimension and scale of the vector space methods, we use the text data that
were collected by the Linguistic Data Consortium in 1997. These data were originally used in
Martinez (2002). The data consisted of 15,863 news reports collected from Reuters and CNN
from July 1, 1994 to June 30, 1995. The full lexicon for the text database included 68,354
distinct words. In all 313 stopper words are removed and after denoising and stemming,
there remain 45,021 words in the lexicon.

This document corpus has 1,834,123 bigrams. Thus, the Term-Document Matrix, TDM
is 45,021 by 15,863 and the Bigram-Document Matrix, BDM is 1,834,123 by 15,863. The
term vector is 45,021 dimensional and the bigram vector is 1,834,123 dimensional. The BPM
for each document is 1,834,123 by 1,834,123 and, of course, very sparse. A corpus can easily
reach 20,000 documents or more and scaling is a significant issue in text processing.. The
15,863 document database proves to be challenging.

3.1 Bigram-Document Matrices and Bigram-Bigram Matrices

Term-document and bigram-document matrices resemble the so-called two-mode social net-
work adjacency matrices. This idea is explored in Wegman and Said (2009). Although the
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resemblance is interesting, the scale of the matrices involved in text mining is dramatically
higher in dimension than almost any social network analysis would entail. Figure 1 illustrates
the bigram-document matrix for just 50 documents. There are actually 1,834,123 bigrams,
but this image was truncated at 12,000 bigrams. In this image, one is coded as white and
zero is coded as black. As new documents are introduced new bigrams are also introduced.
The vertical white bars represent new bigrams being introduced as a new document appears.
The light horizontal bars in the upper-right part of the matrix represent bigrams that had
been introduced from earlier articles and are being reused by later articles.

Using techniques from social network analysis (c.f. Wegman and Said, 2009), we can
convert the bigram-document matrix into a bigram-bigram matrix. Figure 2 illustrates the
Bigram-Bigram matrix clustered by the allegiance methodology for the 50 documents. This
image represents only the first 9,000 bigrams of the 1,834,123 bigrams. Again, one is coded
as white and zero is coded as black. The allegiance methodology is a way of clustering in
social network analysis and was described in Said et al. (2008).

Obviously illustrating a 1,834,123×1,834,123 matrix is not feasible. However, by se-
lecting the most frequently occurring bigrams, we are able to see some of the structure in
the bigram-bigram matrix. The bigram-bigram matrix illustrated in Figure 3 is derived
from the bigram-Document matrix and it shows a satisfying block structure. For example,
the large central block contains the following bigrams: heir-apparent, general-luck, general-
Shalikashvili, base-general, luck-recommend, first-summer, police-station, full-term, past-
think, and courts-reflect. This cluster of words appears to be related to the presidential
actions in 1994 and 1995.

3.2 Text Clusters

We would like to provide an example of how bigrams and trigrams can capture semantic
content in a completely automated way. Based on this corpus, we used a text-based agglom-
erative clustering software called CLUTO. This clustering method uses a recursive splitting
algorithm. In this example, we hypothesized 25 clusters. A portion of the hierarchical
agglomerative tree for the clusters is given in Figure 4.

A slightly more elegant visualization is shown in Figure 5 using a freely available share-
ware called SPACETREE. One can download both CLUTO and SPACETREE from the
web. Googling these names will quickly lead you to these two software products.

3.3 Text Cluster Example

Cluster 0, Size: 157, ISim: 0.142, ESim: 0.008

Descriptive: ireland 12.2%, ira 9.1%, northern.ireland 7.6%, irish 5.5%, fein 5.0%, sinn 5.0%,
sinn.fein 5.0%, northern 3.2%, british 3.2%, adam 2.4%
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Figure 2: Bigram-Bigram Matrix for the Same 50 Documents illustrated in Figure 1.

Discriminating: ireland 7.7%, ira 5.9%, northern.ireland 4.9%, irish 3.5%, fein 3.2%, sinn
3.2%, sinn.fein 3.2%, northern 1.6%, british 1.5%, adam 1.5%

Terms: ireland 121, northern 119, british 116, irish 111, ira 110, peac 107, minist 104, govern
104, polit 104, talk 102

Bigrams: northern.ireland 115, sinn.fein 95, irish.republican 94, republican.armi 91, ceas.fire
87, polit.wing 76, prime.minist 71, peac.process 66, gerri.adam 59, british.govern 50

Trigrams: irish.republican.armi 91, prime.minist.john 47, minist.john.major 43, ira.ceas.fire
35, ira.polit.wing 34, british.prime.minist 34, sinn.fein.leader 30, rule.northern.ireland 27,
british.rule.northern 27, declar.ceas.fire 26

Cluster 0 is the first cluster developed by the CLUTO software. There are 157 documents
on Cluster 0. ISim is a measure of internal similarity and essentially measures the internal
coherency of the cluster. ESim is a measure of the similarity of the Cluster 0 to the remaining
documents. Of course we want ESim to be low and ISim to be relatively high, in this case,
the ratio of ISim to Esim is 17.75. Phrases 2 and 3 are respectively the bigrams and trigrams.
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Figure 3: Bigram-Bigram Matrix Using the 253 Most Frequently Occurring Bigrams.

A quick perusal of these bigrams and trigrams immediately tells us that this cluster focuses
on the sectarian conflict in Northern Ireland that was prominent in the middle 1990s. Please
note that this clustering was done completely automatically with no human input.

Cluster 1, Size: 323, ISim: 0.128, ESim: 0.008

Descriptive: korea 19.8%, north 13.2%, korean 11.2%, north.korea 10.8%, kim 5.8%, north.korean
3.7%, nuclear 3.5%, pyongyang 2.0%, south 1.9%, south.korea 1.5%

Discriminating: korea 12.7%, north 7.4%, korean 7.2%, north.korea 7.0%, kim 3.8%, north.korean
2.4%, nuclear 1.7%, pyongyang 1.3%, south.korea 1.0%, simpson 0.8%

Terms: korea 305, north 303, korean 285, south 243, unit 215, nuclear 204, offici 196, py-
ongyang 179, presid 167, talk 165

972



Figure 4: Snapshot of the recursive partitioning tree.

Bigrams: north.korea 291, north.korean 233, south.korea 204, south.korean 147, kim.sung
108, presid.kim 83, nuclear.program 79, kim.jong 74, light.water 71, presid.clinton 69

Trigrams: light.water.reactor 56, unit.north.korea 55, north.korea.nuclear 53,
chief.warrant.offic 49, presid.kim.sung 46, leader.kim.sung 39, presid.kim.sam 37, north.korean.offici
36, warrant.offic.bobbi 35, bobbi.wayn.hall 29

Cluster 1 has 323 documents in it. Again there is a substantial difference between ISim
and ESim. The ratio of ISim to ESim in this case is 16.00 meaning that this is a very coherent
cluster as well. Again considering the bigrams and trigrams quickly convinces one that the
topic of this cluster is related to the nuclear ambitions of North Korea, still a continuing
topic of interest. Note that one of discriminating terms is “simpson.” The 1994 to 1995
time frame was the time when O.J. Simpson was on trial for the murder of his wife and her
friend. Because the coverage of this event was so extensive, “simpson” actually appears in
many clusters as a single term, but does not usually make it into the list of bigrams and
trigrams.

Cluster 24, Size: 1788, ISim: 0.012, ESim: 0.007

Descriptive: school 2.2%, film 1.3%, children 1.2%, student 1.0%, percent 0.8%, compani
0.7%, kid 0.7%, peopl 0.7%, movi 0.7%, music 0.6%

Discriminating: school 2.3%, simpson 1.8%, film 1.7%, student 1.1%, presid 1.0%, serb 0.9%,
children 0.8%, clinton 0.8%, movi 0.8%, music 0.8%

Terms: cnn 1034, peopl 920, time 893, report 807, don 680, dai 650, look 630, call 588, live
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Figure 5: Snapshot of the recursive tree using SPACETREE.

535, lot 498

Bigrams: littl.bit 99, lot.peopl 90, lo.angel 85, world.war 71, thank.join 67, million.dollar 60,
000.peopl 54, york.citi 50, garsten.cnn 48, san.francisco 47

Trigrams: jeann.moo.cnn 41, cnn.entertain.new 36, cnn.jeann.moo 32, norma.quarl.cnn 30,
cnn.norma.quarl 28, cnn.jeff.flock 28, jeff.flock.cnn 27, brian.cabel.cnn 26, pope.john.paul 25,
lisa.price.cnn 25

This is the last and 25th cluster of our hypothesized 25 clusters. Note that the ISim
and ESim are very close, the ratio ISim to ESim being only about 1.7, suggesting that this
cluster is not very coherent. Considering the bigrams and trigrams in this case confirms that
the cluster is not very coherent. Our guess that there are 25 clusters is probably much too
small. It is hard to see how Los Angeles, San Francisco, World War, and Pope John Paul
easily fit into a cluster along with the many references to CNN news people.

Just to illustrate the capability of the methodology, Figure 6 illustrates two articles from
cluster one. The words under “intersects” are the bigrams these two documents share. One
interesting feature that can be discovered from this methodology is to realize that news
stories often evolve over a few day period and that as this happens, the original text is
reused and augmented by additional material.

4. CLOSING REMARKS

To recap, Henry James said, “To read between the lines is easier than to follow the text.”
Text mining presents great challenges, but is amenable to statistical and mathematical ap-
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Figure 6: Two articles from Cluster 1.

proaches. Text mining using vector space methods challenges both mathematics and visu-
alization especially in terms of dimensionality and sparsity. Our use of term-term, bigram-
bigram, and document-document one-mode networks is just beginning and needs further
exploration. Finally, Winston Churchill said that “The length of this document defends it
well against the risk of its being read.” We hope that this is not the case with this article.
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ABSTRACT 

 

With the UNESCO’s objective, Education for All (EFA) by 2015, it has become necessary, for 

the countries that have not yet reached the universal schooling, to conduct a continuous 

assessment to determine the level of educational development. This allows us to know the scale 

of the effort to be furnished for that purpose. In other words, it is an attempt to know how the 

schooling level evolves by generation in these countries. The Admission Gross Rate (AGR) and 

the Admission Net Rate (ANR) are still used as indicators to give an idea about the proportion of 

children in school per generation. However, these two indicators do not always reflect reality and 

can be misleading to policymakers or planners. These two indicators can be used when 

information can’t be improved or for international comparability, but one must be aware that 

they are not statistically robust. When more complete data is available, better indicators can be 

found. In this article, we propose a less biased estimator of the number of children enrolled per 

generation, say the Generational Admission Rate (GAR). Considering the quality of the school 

data currently available in many countries in addition to the availability of computer software, it 

should not be difficult to calculate this indicator.  In this paper we examine the construction of 

the indicator and its application using data from Senegal. 

 

Keywords: Statistics; estimator; indicator; education; rate of education access   

 

1. INTRODUCTION 
 

In social science the indicators are often built empirically. That is, the quality and quantity of the 

data determines the construction of the indicators and their robustness. Because of insufficient 

information, one often proceeds by approximation in order to find the parameters of the 

theoretical distribution. This also holds for education. The results obtained in this way should be 

readjusted when one has more information. One cannot, for example, continue to use the gross 

rate of admission or schooling when the age distribution of pupils exists. It is now unacceptable 

to find in some scientific publications, a rate of schooling over hundred percent when we are sure 

that there are children not yet enrolled! 

Such indicators, even if they are useful for an international comparability, are mathematically 

not very robust and might not correspond to local reality. That is, they would not meet the 

national needs for planning. In this paper, we propose another estimator to find the number of 

children registered at school per generation (children having the same age). Considering the 

quality of the educational data, currently available in a large number of countries, one can 

achieve this goal with more statistical robustness. We just need to find the statistical law, which 
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would generate these data in order to find their parameters. Once these are found, it will be easy 

to represent reality more accurately and to better plan educational policy.  

With the UNESCO’s objective, Education for All (EFA) by 2015, it has become necessary, 

for the countries that have not yet reached the universal schooling, to conduct a continuous 

assessment to determine the level of educational development. This allows us to know the scale 

of the effort to be furnished for that purpose. In other words, it is an attempt to know how the 

schooling level evolves by generation in these countries.  

The Admission Gross Rate (AGR) and the Admission Net Rate (ANR), are still used as the 

indicators which give an idea about the proportion of the children in school per generation. 

However, these two indicators do not always reflect reality and can be misleading to 

policymakers or planners. The Admission Gross Rate which is a ratio between two incomparable 

populations on the basis of age, can be biased from the statistical point of view. Representing the 

number of all the children who are in the first year at elementary school, its use will overestimate 

the proportion of children admitted at school. Its value can be hundred percent even if the total 

population is not at school. 

The Admission Net Rate, if the legislation on the minimum age for admission to the first 

school class was respected, would be a better estimate of the proportion of school children per 

generation. However, this is not the case in many countries concerned by UNESCO goal. The 

group of children can be scattered in different school classes. One can find them in the first, 

second, third or fourth year of study. Hence, if we limit ourselves to the pupils enrolled in the 

first school class with the required schooling age, we underestimate the genuine number. Hence, 

the value of this indicator will never reach hundred percent, even if the total population is at 

school.   

These two indicators can be used when information can’t be improved or for international 

comparability, but one must be aware that they are not statistically robust. When more complete 

data is available, better indicators can be found.  

In this paper, we propose a less biased estimator of the number of children enrolled per 

generation, say the Generational Admission Rate (GAR). Considering the quality of the school 

data currently available in many countries in addition to the availability of computer software, it 

should not be difficult to calculate this indicator.  Section 2 illustrates the construction of the 

indicator and Section 3 presents its application using data from Senegal. 

 

2. CONSTRUCTION OF INDICATOR  
 

To build an educational access indicator one must take into account four parameters: The level in 

which students are enrolled, the school year, the different ages of students and also the entry date 

into School, which gives formally  

 

                                  Pt, k                    (1) 

 

i.e. the population of k years at time t  

 

                                   Pt, k, d                           (2) 

 

the number of schoolchildren among them at date d, hence, the admission rate will be, by 

definition, 
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corresponding to the proportion of children of ko years, during the school year t0, found in the 

school at time D.  

This includes all members of the generation getting into school at the normal age ko, before 

this age or after. It is clear that, simple observations don’t permit to get the accurate number. It 

will be necessary to organize a census after the enrolment of the last member in the group 

(generation), before we are able to count all the concerned children. That is not feasible as it 

might require many years which makes it impractical for policymakers. As a result of this 

difficulty, statistical estimators should be used as indicators.  

To clarify the idea, let's consider now one cycle of school, with six levels of study and age of 

enrolment seven years. So, the Admission Gross Rate (AGR), which is the usual approximation 

of the admission rate defined above, is written as    
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where, si, t, k is the number of children of k years old, enrolled during the school year t, at level i, 

Km is the youngest student’s age and n the eldest one. We can rewrite the AGR as follows,  
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Kn, representing the normal age to access school.  It is clear that, the value of the second term, 

corresponding to the number of students not belonging to the age group, can be of significant 

importance. Hence, this approximation is not the best one. Due to the fact that the legislation of 

the age of school access is not often respected in most African countries, the following relation is 

always true: km <  kn  ≤ n knowing that empirically (see Figure 1) 5 ≤ n ≤15. 

The other estimator of the AR is the Admission Net Rate (ANR) noted as follows:  
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As we see, here the superfluous term is removed from the AGR. However, we do not take into 

account the members of the age group who came into school late, after the normal age. This 

means that, the value of this estimator is still less than the number to be found.  
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Taking into account these two flaws, we propose another estimator, generational admission 

rate (GAR). This will be written as:  
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Here, we consider all members of the age group who are at school, at all levels (classes), as well 

as the pupils in the first school class who have exceeded the required age. The second part of this 

relation is the estimated number of the group of late comers, those who registered after the 

school year t0. We try to take into account all those who are not registered at the normal access 

age. So we reduce the biases existing with the usual estimators. The difference between this 

indicator and the admission gross rate (AGR) is that part noted IR.  
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This part enables us to see the evolution of early entries, the children admitted before the 

required age. IR> 0, means that the number of children who have the preschool age continue to 

increase in primary school. In other words, there is a rejuvenation of the entire primary pupils. 

Thus 
 

   ANR<GAR < AGR                      (11) 
 

IR <0, means the reverse of the above phenomenon, which gives  
 

                          ANR <AGR <GAR                               (12)  
 

Hence, this indicator will characterize the policy of school recruitment. It shows how one fills 

the deficit about the request for access at the legal age. This can be done by the recruitment of 

children who have not yet achieved the required age or children who have exceeded this age. 

 

3. APPLICATION WITH DATA OF SENEGAL 
 

3.1 Data Sources 

 

The current information state, provided by the Department of Education, accessible through the 

Internet, makes the calculation of the proposed indicator possible. This possibility didn’t exist a 

year ago, because of the non-availability of data on the school children age. The Ministry of 

Education in Senegal publishes an annual statistical yearbook. The accounts of school are 

crossed with those from the services having in charge censuses and surveys because the size of 

the population reaching the required age for school access is the base of all indicators 

constructed at this level. 
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Table 1: Estimation of the number of children aged seven years in October 2003. 

Region of Senegal M
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Dakar 305 81 2,53% 33 050 2,77% 63 632 

Ziguinchor 9 380 2,55% 9 514 2,50% 18 894 

Diourbel 22 262 5,20% 19 627 3,89% 41 889 

St. louis 24 725 5,70% 23 687 5,15% 48 412 

Tamba 9 940 3,20% 15 460 6,17% 25 400 

Kaolack 19 607 2,47% 24 009 3,67% 43 616 

Thiès 21 861 2,21% 26 117 3,17% 47 977 

Louga 13 894 3,50% 14 466 3,30% 28 359 

Fatick 12 333 0,97% 12 340 0,74% 24 672 

Kolda 16 137 3,08% 17 634 3,51% 33 770 

Sénégal 18 0719 3,14% 195 903 3,43% 376 622 

The totals might not correspond to the sum of elements because of rounding 

 

 

It should be noted that the documents issued by the Direction of Planning and Statistics from the 

Ministry of Economy and Finances, about the census of 1988 and the Senegalese Households 

Survey in 2001 (ESAM_II), do not allow one to know directly the size of studied group because 

the data are grouped per age. One has to look for this number by using the Sprague coefficients 

(See Appendix A: Tables A.2). These enables us to reconstruct the pyramid of the population at 

different ages. Table 1 is calculated from the sources listed above. We assumed, to realize this 

table, that the birth rate, infant mortality, as well as that of migration, has not decreased the 

growth rate of the target population. As a result, the number of children aged seven years, 

increases by 3.24% annually. This means that, they are 376.622 children in October 2003. On the 

basis of this number, one can calculate the different access rates to education. 

 

3.2 Generational Admission Rate (GAR) 

 

To build this indicator, we have taken into account all pupils of seven years, regardless of their 

scholar level (class), plus all those who have exceeded this age in the first year of elementary 

school (Class of Initiation = CI). It should be noted that, the recruitment of members of an age 

group at school can last for years. It can start as early as four years until the age of fourteen (See 

Figure I). There are late comers, who are older than 7 years in the first level (CI) and anticipants 

or preschool; those who entered before reaching the legal age, which is seven years in Senegal.  
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Figure 1. Pyramid of ages in the first year at elementary school (CI) 

 

 

The number of elders in the first school class makes the estimation of the number of those who 

came into school late possible. Hence, we can say that the proportion of pupils among the 

children of seven years old is equal to 77.2% (Table 2) at October 2003. That is to say three 

children over four per generation. This means that, the school registration, from October 1997 to 

October 2003, exceeds by 2.13% that of the target population. This shows to what extent the gap 

between the growth of target population and the enrolled has now been reduced. If the system 

keeps this pace, the goal of education for all (EFA) will be achieved in twelve years, at 2016 

(See Figure 2). To realize this goal in October 2015, the GAR must increase annually by 2.2% 

(Table 2). In other words, the mean growth of the number of schoolchildren aged 7 years must 

annually exceed by 2.2% the growth of population of the same age. That is to say, the enrollment 

in that group must grow by 5.61% annually.  

 

Table 2: Admission Gross Rate, annual growth From  97 to 2003 and necessary rhythm to reach  

the EFA at 2015 

 

Region of 

Senegal 

Female 

Admission 

Rate 

Annual 

Growth 

Rate 

Global 

Admission 

Rate 

Annual 

Growth 

Rate 

Necessary Annual 

Rhythm for 2015 

Necessary 

Registration Growth 

Rate for 2015 

Ziguinchor 98,27% 2,89% 102,18% 1,83% -0,2% 2,33% 

Kolda 89,12% 7,05% 99,22% 5,47% 0,1% 3,58% 

Fatick 91,66% 14,25% 94,26% 12,68% 0,5% 1,23% 

Dakar 86,83% -0,59% 92,00% -0,47% 0,7% 3,46% 

Thiès 76,09% 4,14% 85,02% 4,32% 1,4% 4,53% 

Tamba 53,69% -6,89% 68,78% -4,87% 3,2% 9,34% 

Kaolack 62,58% 6,32% 67,55% 5,82% 3,3% 6,99% 

St-Louis 69,94% -1,83% 64,88% -3,75% 3,7% 8,82% 

Louga 62,29% 5,81% 64,80% 3,28% 3,7% 6,99% 

Diourbel 47,89% 6,37% 44,45% 2,52% 7,0% 10,88% 

Matam       

Sénégal 73,12% 2,97% 77,20% 2,13% 2,2% 5,61% 
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Figure 2. Evolution of admission rates in Senegal 

 

 

The upper parts of the curve signify that the growth of the registered children is faster than that 

of the targeted population. It can be seen that Senegal maintains its recruitment policy. The 

number of children who have not yet achieved the school age among newcomers is constant. The 

GAR and AGR merge (see Figure 3).  

 

 
Figure 3. School Access Rates 

 

 

In addition, one should also say that the admission rate varies from one region to another. It is 

geographically disparate, which obviously generates inequality. The analysis of Table 2, shows 

that the level of enrollment in the regions of Thies, Dakar, Fatick, Ziguinchor and Kolda, is 

higher than the national average. Children in these areas have, on average, 1.43 times more 

opportunities than the others. The overall disparity is 16.45%. (See Figure 4).  
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Figure 4. Regional inequality measure of admission in the first school class Year 2003 

 

Usually, this curve is drawn below the first bisector curve. But, to get a more clear interpretation, 

one can draw this one above the bisector in order to show the concentration of the wealth 

compared to that of poverty, and not the opposite.  

 

 

4. CONCLUSION  

 

The usual indicators of school access, namely the gross rate or net rate of admission would give, 

in the absence of good information about school, an idea of educational development in a 

country. However, planning solely on this basis, one runs the risk of missing the target. 

The generational admission rate provides a better approximation of the true measure of school 

access per generation, allowing us to know how the schooling grows in a society and to what 

extent the State respects its commitments to achieve education for all.  In addition to this, it is 

sufficient to have the distribution of schoolchildren by age to be able to calculate this indicator 

and deduce other useful information such as the recruitment policy. 
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APPENDIX 

 

A. Demographic Data 
 

Table A.1: Second Senegalese survey about the households (ESAM_II) DPS, August 2001: Population of 7 years. 

Region Men 
Growth rate  

88-01 
Women 

Growth rate  

88-01 
Total 

Growth rate  

88-01 

Dakar 29 030 2,53% 31 225 2,77% 60 255 2,65% 

Ziguinchor 8 901 2,55% 9 036 2,50% 14 727 2,53% 

Diourbel      20 034 5,20% 18 127 3,89% 38 161 4,55% 

St. louis 22 032 5,70% 21 337 5,15% 43 368 5,42% 

Tamba 9 309 3,20% 13 649 6,17% 2 958 4,69% 

Kaolack 18 638 2,47% 22 274 3,67% 40 912 3,07% 

Thiès         20 888 2,21% 24 476 3,17% 45 364 2,69% 

louga            12 934 3,50% 13 519 3,30% 26 452 3,40% 

Fatick        12 086 0,97% 12 152 0,74% 24 238 0,86% 

kolda         15 148 3,08% 16 410 3,51% 31 558 3,30% 

Senegal 169 000 3,14% 182 205 3,43% 347 993 3,29% 

 

 

Table A.2 : Estimation, by the Sprague coefficients, of the seven year class age from the census of 30 may 1988 

Region Men Growth rate Women Growth rate Totale Growth rate 

Dakar 20974 3,67% 21900 3,90% 42874 3,78% 

Ziguinchor 6417 2,77% 6551 3,55% 12968 3,16% 

Diourbel 10369 4,25% 11033 5,36% 21401 4,81% 

St-Louis 10721 1,00% 11109 1,76% 21829 1,38% 

Tamba 6181 2,58% 6266 2,94% 12447 2,76% 

Kaolack 13580 3,70% 13944 4,44% 27525 4,07% 

Thiès 15722 3,59% 16323 4,03% 32044 3,81% 

Louga 8273 1,23% 8859 2,92% 17131 2,07% 

Fatick 10654 3,70% 11043 4,44% 21697 4,07% 

Kolda 10206 2,77% 10473 3,55% 20679 3,16% 

Senegal 113096 3,03% 117 501 3,74% 230597 3,38% 

 

- The Sprague Coefficient has been used in estimating the number of children at the age of seven years from 

grouped data of a population (-0,008*P0-4 +0,216*P5-9  -0,008*P10-14) 

- To count the number of children of seven years between the end of a census and the school entry, we rectify 

the formula as follows:   )*1(*)1(* 1
77 rcrPP knnk  

 where r represents the growth between census, 

c the gap corrector between the two census dates and the size of 7 year class age at time k 
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B. Scholar Data 

 

Table A.3 : Estimation of the number of children aged 7 years at October 2003. 

From the census of may 1988 and the Senegalese survey about the households (ESAM_II) in august 2001 

Region 
Male 

Population  
Growth rate 

Female 

Population  
Growth rate Total 

Dakar 30581 2,53% 33050 2,77% 63 632 

Ziguinchor 9380 2,55% 9514 2,50% 18 894 

Diourbel 22262 5,20% 19627 3,89% 41 889 

St. louis 24725 5,70% 23687 5,15% 48 412 

Tamba 9940 3,20% 15460 6,17% 25 400 

Kaolack 19607 2,47% 24009 3,67% 43 616 

Thiès 21861 2,21% 26117 3,17% 47 977 

louga 13894 3,50% 14466 3,30% 28 359 

Fatick 12333 0,97% 12340 0,74% 24 672 

kolda 16137 3,08% 17634 3,51% 33 770 

Senegal 180719  195903  376 622 

 

 

 

 
Table A.4: Number of scholar population aged 7 years and the children in the first year at elementary school (CI), 

October 2003. 

 
 

  

Region 7 years in school >7years in CI % in the group <7years in CI % in the group 

Dakar 44232 13587 17,93% 20348 26,85% 

Diourbel 14439 2734 6,19% 2616 5,92% 

Fatick 19133 4046 10,09% 5470 13,65% 

Kaolack 24370 4235 8,33% 6258 12,31% 

Kolda 29650 5093 15,25% 5325 15,94% 

Louga 16903 2070 8,72% 3808 16,04% 

Matam 9877 1935  2718  

St-Louis 17462 3546 20,30% 5625 30,89% 

Tamba 16414 1912 10,11% 2359 12,47% 

Thiès 31357 8632 15,16% 7144 12,55% 

Ziguinchor 15353 3278 15,65% 3378 16,13% 

Senegal 239 190 51 068 13,03% 65 049 16,60% 
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Table B.1 : Enrolled in the first year at elementary school (CI) in 2003/04 

Enrolled in CI Enrolled in Public CI in 2003/04 

Region Enrolled Global Enrollment Repeaters New scholars 

Dakar 58540 40944 5106 35838 

Diourbel 18618 16820 1735 15085 

Fatick 23257 22750 2019 20731 

Kaolack 29461 28335 2297 26038 

Kolda 33508 33196 2742 30454 

Louga 18377 16654 1489 15165 

Matam 10506 10301 1167 9134 

St Louis 20902 20498 2235 18263 

Tamba 17470 16648 846 15802 

Thiès 40792 38127 4342 33785 

Ziguinchor 19305 18405 2089 16316 

Senegal 290 736 262 678 26 067 236 611 

 

 

Table B.2:  Admission Gross Rate from 77 to 2003 
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ABSTRACT 

 

In Malaysia, the manufacturing and the service sectors have higher contributions to the gross 

domestic products (GDP) compared to the agricultural sector. However, the agricultural sector 

still plays an important role in the Malaysian economy. This sector has been re-emphasized 

through the inclusion of biotechnology and modernization of the agro-based industries. Using the 

input-output approach of analysis, we could determine the impact of this sector using the inter-

industry linkages effects. Analysis of the recent input-output table, reveals that the Malaysian 

agricultural sector has an above average linkage effect on the other sectors. This means that the 

other sectors are still dependent on the agricultural sector for the value-added expansion in the 

economy. With the rapid development in the economy, Malaysian agricultural sector could 

potentially have a large impact on the rest of the economy, either as a supplier or a purchaser, 

especially in the production and processing of agro-based products and food industries. 

 

Keywords: contribution to GDP, inter-industry linkages, input-output analysis, value added 

generation, agro-based products 

 

1. INTRODUCTION 

 

In Malaysia, the agricultural sector was the main contributor to the national economy for the first 

three decades since independence (1957). It was the foundation and the driving force behind the 

economic growth of the economy (Chua, 2000). However, in the late eighties and the nineties, 

the manufacturing sector has surpassed the agricultural and the service sectors as the main 

contributor to the gross domestic product of Malaysia. This was due to the impact of “import 

substitution” as well the “export promotion” policy embarked on during the eighties (Wong, 

1985).  

The experience of the 1998 financial crisis in Malaysia has changed the mindset of its citizen 

in promoting back this sector. During the time of the crises, the recovery in agricultural output, 

underpinned by the significant improvement in palm oil yield, contributed towards the positive 

growth in the economy (Bank Negara Malaysia, 2000). Today, although this sector is the third 

highest sector after manufacturing and services, it has become an important economic growth 

catalyst for the nation. 

 

 

mailto:mshahar@tmsk.uitm.edu.my
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2. MALAYSIAN AGRICULTURAL SECTOR 

 

The Malaysian agricultural sector is dominated by the production of palm oil, rubber and forestry 

products. Other major agricultural production includes rice, poultry, fruits and vegetables 

(Wong, 2007). Oil palm and rubber currently account for 70 percent of all agricultural land use. 

Area expansion was the major source of agriculture production growth until recently. However, 

as modest expansion of agricultural land use in agriculture continues, crop and other plantation 

are also being lost due to urbanization. In retrospect, pressure on land and labour resources have 

caused a structural change in the agricultural sector. 

Even though the agricultural sector contributed only 8.2% of the Malaysian gross national 

product, the total labour force engaged in this sector accounted for 13.1% of the overall 

workforce in 2006 (Statistics Department, 2007). It is therefore pertinent that this sector should 

not be neglected as it involves a large proportion of the Malaysian labour force. Moreover, with 

the increasing trend of global food prices, the increasing need for food security as well as the 

opportunity for large commercialisation of food products, the sector should be given greater 

attention by the government.  Table 1 shows the profile of Malaysian agricultural sector as well 

as the agro-based industries production output in the year 2000. 

The above table shows that within the agriculture sector itself, the largest contribution to the 

GDP are given by forestry and logging (10.7%), oil palm plantation (8.1%),other agriculture 

(which comprises of paddy, fruits, pepper, flower planting and veterinary services) (5.2%) and 

livestock breeding (4.8%). On the other hand, the agro-based industries that contribute large 

proportions to the agriculture sector as a whole are manufacturers of oils and fats (21.3%), 

sawmills (8.1%), rubber and related products (5.6%) and furniture (5.3%). It can also be seen 

that in terms of food production, if we aggregate meat and meat products, dairy production, 

seafood, preservation of fruits and vegetables, bakeries, confectionary and other food, they 

account for almost 10.3% of the overall contribution to the agriculture and agro-based sectors. 

In view of the fact that the values of agricultural production and the related agro-based 

products are still significant in the Malaysian economy, the 9
th

 Malaysian Plan (9MP) has given 

a new focus in this sector on the implementation of the plan (Ministry of Finance, 2005). One of 

the policies reflected in the 9MP is the revitalizing of the agricultural production, particularly in 

the rural areas. This is because priority was given to the rural populace with the goal of 

eradication of poverty level and at the same time uplifting the income level of the rural income 

as stipulated in the New Economic Policy (NEP). 

In addition to that, the Third National Agricultural Policy (NAP3), which covers the period 

of 1998-2010, provides the policy framework for the future growth of the agricultural sector in 

the next decade of 2010 to 2020 (Ministry of Agriculture, 2000). The policy has been formulated 

to ensure that the agriculture sector’s strategic role in the national development is sustained and 

enhanced. The overriding objective of the NAP3 is the maximization of farm income through 

optimal utilization of resources in the sector and to enhance the domestic food production. 

 

3. ECONOMIC LINKAGES IN THE INPUT OUTPUT FRAMEWORK 

 

The relationship between the flow of the various sectors in the economy can be traced using 

input-output analysis. Analysis can be done through the input-output table whereby the 

relationship between the producers and the consumers as well as the interdependence among 

industries can be shown. It tracks the commodity flow (goods and services) from one industry to 



991 

 

another industry. This flow of commodities supplied and used is compiled systematically in the 

form of input-output tables as mentioned in (Hj Ismail, 2007). 

 

Table 1: Profile of Malaysian Agricultural and Agro-based Production 2000 
No Sector Value (RM Million) 

   Current Prices 

Percentage 

 

 

1 

2 

3 

4 

5 

6 

7 

8 

 

 

 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

Agriculture 

-------------- 

Other Agriculture 

Rubber plantation 

Oil Palm Plantation 

Coconut 

Tea estates 

Livestock breeding 

Forestry and Logging 

Fishing 

 

Agro-based Industries 

------------------------- 

Meat and meat production 

Dairy production 

Preservation of fruits & vegetables 

Preservation of seafood 

Manufactures of oils and fats 

Grain mills 

Bakeries 

Manufactures of confectionary 

Manufacture of other food 

Manufacture of animal feed 

Soft drinks 

Tobacco 

Sawmills 

Manufacture of wood products 

Furniture 

Paper and board industries 

Rubber processing 

Rubber and related products 

 

 

 

       6,858,108 

       2,036,377 

      10,643,095 

          145,326 

            27,580 

        6,290,101 

       13,928,279 

         5,452,827 

 

 

 

       1,389,961 

       2,236,793 

        607,143 

       1,499,537 

      27,847,207 

       2,357,800 

       1,687,408 

       1,164,080 

       4,786,273 

       2,469,741 

       1,180,033 

       1,637,130 

      10,554,243 

       2,116,467 

      6,884,801 

      6,517,466 

      3,255,365 

      7,351,856 

 

 

    5.2 

    1.6 

    8.1 

    0.1 

    0.0 

    4.8 

   10.7 

    4.2 

 

 

 

    1.1 

    1.7 

    0.5 

    1.1 

   21.3 

    1.8 

    1.3 

    0.9 

    3.7 

    1.9 

    0.9 

    1.3 

    8.1 

    1.6 

    5.3 

    5.0 

    2.5 

    5.6 

 

 Total     130,969,997    100.0 

                                 Source: Input-Output Table Malaysia 2000, (published 2005). 

 

 

The input-output table consists of four quadrants. The first quadrant is the intermediate input 

quadrant, which is referred to as the heart of an input-output matrix (Jensen and West, 1986). 

The second quadrant represents the final demand where it is considered as the output of the 

producing sectors, i.e the sectoral distribution of household expenditure, government 

expenditure, fixed capital formation and exports (the destinations of output that do not flow to 

other sectors as inputs). On the other hand, the third quadrant shows the primary inputs quadrant, 

which consists of the sectoral distribution of wages, operating surplus, value added, indirect 

taxes, subsidies and depreciation, while the fourth quadrant represents the primary inputs directly 
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linked to final demand  (O’Connors & Henry, 1975; Miller and Blair, 1985, Jensen and West, 

1986; Sauian 2007). 

The input-output tables describe the complex process of production, the use of goods and 

services and the way in which income and value-added products are generated within the various 

sectors of the economy, where the set of producers of similar goods and services forms a 

homogenous industry (Valadkhani, 2003). Through a set of tables during a period, the structural 

change in the economy and the specific sector’s economic characteristics can be revealed (Wu & 

Zhang, 2005). 

In essence, the symmetric input-output table is a product or industry matrix describing the 

domestic production processes and the transactions in products of the national economy in detail. 

For example, a two-sector input-output table allows us to understand the industrial relationship 

between agriculture and the rest of the economy, thus highlighting the implication for structural 

and policy analysis (Pizzoli, 2004). 

Therefore, input-output analysis has multifarious applications. For instance, it offers a static 

view of the structural relationship among the different sectors in the economy (typically national 

or regional) for a certain period of time, generally a year. The relationship is expressed purely in 

monetary terms (Lee and Mokhtarian, 2004). Other applications of input-output tables are 

determining the technical capability of production, labour productivity and comparing the 

technological standard of one country compared vis-à-vis other countries. Similarly, the study of 

economic linkages among the various sectors of the economy can easily be discovered. 

 

4. METHODOLOGICAL APPROACHES 

 

4.1 Forward and Backward Linkages 

 

In an interdependent economy, a sector is linked to its input and output sectors by its direct and 

indirect purchases and sales (Cai & Leong, 2002). A sector’s linkage through its direct and 

indirect purchases is called the backward linkage. On the other hand, a sector is said to be 

forward-linked to other sectors through its direct and indirect sales to them. Hirschman (1958) 

stated the analysis of strengths of backward and forward linkages allows us to identify the most 

important sectors in the economy. 

Backward linkage or input provision is defined as an activity that employs significant amount 

of intermediate inputs from other activities for production purposes. Output utilization or 

forward linkage, on the other hand, is defined as an activity that caters for final demand but also 

induces attempts to utilize its output as inputs in other new activities (Hirschman, 1958 and 

Linnemann, 1987). Linkages between agriculture and the rest of the economy had been used in 

many input-output based general equilibrium models. Examples are the works of Norton (1988) 

and Song (1998). The former analysed the incidence by sector and household income for the 

benefits of food aid programmes, while the latter examined the impact of agriculture and other 

industries. Van Zyl and Rooyen (1990), also used the concept of economic linkages to evaluate 

the contribution of agriculture to the economic growth of South Africa. 

Two common approaches to measure the strength of backward and forward linkages are the 

works of Rasmussen (1956) and the Chenery & Watanabe (1958). Since the Chenery-Watanabe 

Approach of evaluating the impact of a sector to the overall economy is only confined to the 

direct linkage only, we resort only to the Rasmussen’s approach as it considers both the direct 

and the indirect linkages. 
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For inter-industry comparison purposes, the linkage indices are normalized in such a way that 

their average value is unity. Based on Rasmussen’s model, the measure of backward linkages is 

called the Power of Dispersion Index. It describes the relative extent to which an increase in final 

demand for a product of a given industry is dispersed throughout the total system of industries. 

The Power of Dispersion Index is defined as: 
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                                                                                                                   ((11)) 

  

where BLj indicates backward linkage of agriculture in jth sector  

                          A indicates agricultural sector 

                          W indicates other sector 

                          N indicates number of sectors 

                          Bij is the ij
th

 element of the Leontief’s inverse matrix (see Miller & Blair 1985). 

The forward linkage index is measured using The Sensitivity of Dispersion Index. The index 

describes the importance of a given industry as a supplier of resources to other industries. It is 

defined as in equation 2 below: 
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WWhere FLj indicates the extent of forward linkage of agriculture in jth sector and A, W, N and Bij 

as defined in equation 1, above. 

  

44..22  IImpact Analysis  
 

Another approach in looking at the impact of agriculture is through the use of impact analysis. 

This analysis is also known as multiplier analysis. Multiplier analysis measures the total change 

throughout the economy from one unit change for a given sector. For instance, for every one 

dollar of final demand for a product of a sector generates direct and indirect income to the 

economy as a whole. The relationship between the initial spending and the total effect generated 

by the spending is known as the impact of that sector to the economy as a whole. 

In this analysis, we use only the income multiplier because it is the simplest form of various 

multipliers. It is considered useful because it is expressed as a ratio of the sum of direct and 

indirect income change resulting from a unit change of final demand in that sector. The 

calculation is obtained by multiplying the rows of technical coefficients of the income in each 

sector by the column of the interdependence coefficients (O’Cornor & Henry (1975)). It should 

be noted that the multiplier value is less than unity. The partial income multiplier is defined as: 
 

  T

y

1
AAI


                                                            (3) 

 

where (I - A)
-1

 is the interdependence coefficient T

y
A  is the technical coefficients of income 

arising. 
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55..  RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONNSS  

  

55..11 Results of the Economic Linkages Analysis 

 

Using the Rasmussen’s indices of backward and forward linkages we could determine the 

respective indices using equations (1) and (2) by adopting the Malaysian Input-Output Table 

2000.For strong backward and backward linkages the values must be greater than 1. Table 2 

shows the summary of the backward as well as the forward linkages of the agricultural and agro-

based sectors where at least one of the linkages is greater than 1. 

Table 2 shows that the index of dispersion and the index of sensitivity for livestock breeding, 

fishing,  manufacture of oil and fats and manufacture of paper and board products are greater than 

one. This indicates that all these sectors have high backward as well as forward linkages, which 

implies that they are both important suppliers as well as important purchasers of materials from 

other industries. On the other hand, we have 13 agriculture and agro-based sectors with strong 

backward linkages but weak forward linkages. These include meat and meat products, dairy 

production, preservation of fruits and vegetables, preservation of seafood, grain mills, bakeries, 

other food, soft drinks, sawmills, wood products, furniture and rubber products. This imply they 

are important consumers or purchasers of inputs from other industries. 

There are four agriculture and agro-based industries that show strong forward linkages but 

weak backward linkages. They are other agriculture, oil palm estates, forestry and logging and 

manufactures of animal feed. In this regards, these sectors are good suppliers of inputs or 

materials to other sectors in the economy. 

  

Table 2:  Summary of Backward and Forward Linkages of  Selected Agriculture and Agro-based 

Sectors year 2000 
N

o 

Sectors Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 Sector 7 Sector 8 

 

 

 

 

 

1 

2 

 

3 

 

4 

5 

 

6 

 

7 

8 

Interdependence 

Coefficients 

------------- 

Oil Palm 

Livestock 

breeding 

Forestry, Logging 

Fishing 

Meat, meat 

products 

Oil and Fats 

Other food 

Paper, wood 

products 

 

Technical 

Coefficients 

------------- 

Compensation of 

Employees 

 

Income M’plier 

-------------- 

Income Arising () 

 

 

 

1.00045 

0.00410 

 

0.00286 

0.00026 

0.00011 

 

0.01195 

0.00030 

0.00135 

 

 

 

 

 

0.12269 

 

 

 

 

0.12399 

 

 

 

0.01024 

1.30296 

 

0.00368 

0.00640 

0.00214 

 

0.02670 

0.00651 

0.00570 

 

 

 

 

 

0.05205 

 

 

 

 

0.07308 

 

 

 

0.00010 

0.00010 

 

1.02836 

0.00014 

0.00005 

 

0.00029 

0.00013 

0.00059 

 

 

 

 

 

0.13624 

 

 

 

 

0.14110 

 

 

 

0.01072 

0.00026 

 

0.00214 

1.10434 

0.00047 

 

0.00192 

0.00085 

0.00170 

 

 

 

 

 

0.10680 

 

 

 

 

0.11993 

 

 

 

0.00780 

0.59650 

 

0.00382 

0.02768 

1.11316 

 

0.02032 

0.03029 

0.05136 

 

 

 

 

 

0.05124 

 

 

 

 

0.09985 

 

 

 

0.01195 

0.00622 

 

0.00009 

0.00040 

0.02032 

 

1.98708 

0.05537 

0.00225 

 

 

 

 

 

0.06092 

 

 

 

 

0.12906 

 

 

 

0.00086 

0.00044 

 

0.04837 

0.00042 

0.00023 

 

0.00225 

1.05939 

0.00054 

 

 

 

 

 

0.08652 

 

 

 

 

0.09862 

 

 

 

0.01239 

0.00218 

 

0.00702 

0.16520 

0.00072 

 

0.05537 

0.04179 

1.17805 

 

 

 

 

 

0.09200 

 

 

 

 

0.13564 

* Calculated from Input-Output Table Malaysia 2000 
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55..22  RResults of the Impact Analysis  

We could determine the partial income or output multiplier using equation (3) utilizing the data 

of the input-output tables of Malaysia for the year 2000. It should be noted that in this analysis, 

we only considered relevant sectors with strong backward and/or forward linkage. Table 3 below 

depicts the partial income multipliers of the eight sectors with these properties. 

 

The above table shows that an increase in one unit of final demand of oil palm production, will 

result in an increase 0.12239 unit of income to the entire economy. Similarly, an increase in one 

unit of final demand in the paper and wood products sector will result in an increase of 0.13564 

unit of income as a whole. Overall, we can see that income multipliers of the relevant eight 

sectors have a decent multiplying impact between 7 to 14 percent to the entire economy. 

 

6. CONCLUDING REMARKS 

 

From this analysis, it was shown that the agriculture sectors with the agro-based industries had 

benevolent impact on the whole of the Malaysian economy. Using the economic linkages 

analysis, we showed that 4 sectors have strong backward as well as forward linkages to the other 

sectors of the economy. 13 sectors have strong backward linkages but weak forward linkages, 

while 4 other sectors have strong forward linkages but weak backward linkages. Generally, it 

appears that the agriculture and the agro-based sectors have above average linkages to the other 

sectors in the economy. It is therefore clear that they are still important sectors as they are either 

the supplier of inputs to the other sectors or consumers from other sectors in the economy. 

Using the multiplier analysis, we showed that most of the agriculture and agro-based sectors 

have significant impacts on the economy as a whole. This was indicated by the modest values of 

partial income multipliers on at least 8 selected sectors.  

This study also gives an affirmative note to laud the government efforts in enhancing these 

sectors as catalyst for growth. It justifies the greater focus by the government on agriculture in 

the New Agricultural Policy as well as in the 9
th

 Malaysian Development Plan (9MP). With the 

new significant contributors to the GDP like tourism and halal products (products which are 

Syariah compliant), golden opportunities in agriculture lie ahead. Concerted efforts are now 

carried out to promote “agro-tourism” as well as the setting up of “halal hub” in Malaysia for 

importers and exporters. With these new embarkation and commitment by the government, the 

potentials of agriculture and agro-based sectors to emulate growth and contributing higher 

proportion in the economy are promising. 
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HUMAN CAPABILITIES AND INCOME SECURITY 

A NEW METHODOLOGICAL APPROACH 

 

  

 

 

 

 

ABSTRACT 

 

As the World Bank moves toward a broader understanding of poverty reduction and the 

relationship of risk to poverty, the standard concepts and interventions of social protection are no 

longer sufficient. In its first strategy paper for the social protection sector published in 2001, the 

Bank highlights the need to expand the definition of social protection to encompass all public 

interventions that help individuals, households, and communities to manage risk or that provide 

support to the critically poor (World Bank, a, 2001). The paper recommends that social 

protection programs be embedded in an integrated approach to poverty reduction based on a new 

framework for social risk management. In the same regard, many researchers - among them 

Nobel Prize winners - have studied the causes of poverty and the means to eliminate this 

phenomenon introducing new approaches and innovative solutions. Theodore Schultz
1
 and Gary 

Becker
2
 pioneered new ideas focusing on human capital investment as a highly efficient tool in 

poverty reduction. Moving in the same direction, this study introduces an integrated approach 

based on social risk management to propose an integrated income security plan. The underlying 

approach relies on utilizing human capabilities during early stages of the lifecycle to increase the 

chance of not falling into poverty during the later stages. This paper first introduces 

reclassification of the human life cycle to improve income related risk management, and then 

introduces a comprehensive income security plan aimed at tackling poverty and its causes. The 

plan we suggest is called Human Capital – Income Security (HCIS), and it adopts a self-aid 

approach that allows students to borrow using on their future expected income as collateral, to 

pay for their education expenses with deferred repayment. It also helps individuals to manage 

retirement benefits during old age. Thus, the HCIS plan helps individuals to manage their 

lifetime income and expenses during education, employment and retirement stages of their 

lifecycle managing the changing needs and surplus from stage to stage. Three different risks are 

managed through the suggested plan; the risk of insufficient resources to finance investment in 

education during the pre-employment stage, the risk of not having enough income to payback 

study loans during the work stage, and the risk of insufficient income during old age. In this 

paper, we develop an actuarial model for the suggested HCIS plan and tests it using death and 

invalidity rates from the Social Insurance Fund for Government Employees in Egypt.  

                                                 
1
 Theodore Schultz was the 1979 winner of the Nobel Prize in economics; he promulgated the idea of educational 

capital, an offshoot of the concept of human capital.   
2
 Gary Becker was awarded the Nobel Prize in economics in 1992; he is interested in social economics and among 

the foremost exponent of the study of human capital. 
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1. INTRODUCTION 

         

Historically, the primary source of wealth has shifted over the last few hundred years from land 

(at the end of the 18th century) to physical capital (at the end of the 19th century) to human 

capital - education and cognitive ability - by the end of the 20th century (DeMuth, 1997). Along 

this line, the definition of poverty has evolved into a second stage. Defining poverty through 

primarily quantitative approach dominated the line of thought over the second half of the 

twentieth century, whereas utilizing the capability approach for the definition of poverty became 

widely accepted since the 1990s. The quantitative approach focuses on the insufficient cash 

income to maintain a minimally acceptable standard of living. However, the capability approach 

goes beyond the lack of income concept and is based on the performance of certain functions 

necessary for human welfare including social attributes such as knowledge, skills, health, 

security, and freedom, which enables a person to use her/his own capabilities to generate enough 

lifetime income over different stages of their  lifecycle (Ali-Eldin, 2003). 

Changing definitions and approaches affect strategies relating to fighting poverty and 

identifying ways in which poverty can be effectively tracked. Schultz and Becker in their work 

dismissed the pessimistic vision of Malthus which sees poverty as an inevitable catastrophe of 

the interaction between population growth and destruction of natural resources (Mursa, 1981). 

They conclude that state of underdevelopment in many countries does not originate from the 

rarity of physical capital but from insufficient resources allocated to raise population capabilities 

and to knowledge improvement through investment in education and other form of human 

capital (Lee, 1999).  

On one hand, Gary Becker pointed out during the early sixties that “Education is an 

investment and it adds to our human capital just as other investments add to the physical capital” 

(Becker, 1964). On the other hand, Schultz proposed an approach to economic growth focusing 

on efficient management of expenses coupled with improvement of the quality of the working 

force, which dismisses the increase of physical capital approach that dominated economic 

growth since the 1960s (Mursa, 1981).  

The fundamental idea is that education enhances individuals’ abilities, qualifications and 

knowledge, which in turn increases their productivity. Thus the human potential, helped by the 

institutional arrangement, is capable of generating creativity, intelligence, and effort, and of 

providing adequate answers to the problem of resource scarcity (Mursa, 1981). These ideas were 

proven to be effective in achieving economic prosperity as clearly illustrated by countries such as 

Japan, Taiwan, Hong Kong, South Korea, and other fast-growing Asian economies. Although 

these countries are characterized by somewhat limited natural resources, they still managed to 

achieve significant and rapid development through building the capabilities of their populations 

(Becker, 1998). 

In many countries, where student loans are not available, the current system in education is 

something similar to pay-as-you-go mechanism in pension plans, where current workers pay for 

current retirees with a promise that tomorrow’s workers will pay for their retirement benefits. In 

education, current parents/ generation pay for education expenses of the current students, with 

the passive promise that current students will pay for educational expenses of the following 
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generation. Modigliani
3
 argued that the pay-as-you-go system must be discarded since it has 

proved financial unsoundness (Modigliani et al, 1999). Contributory personal pension schemes 

introduce a reform option to overcome the pitfalls of pay-as-you-go scheme (they allow each 

person to pay for her/his own retirement benefits) (Palacios and Sluchynsky, 2006). 

It is not only the pay-as-you-go mechanism involved with the retirement pension plan which 

has proved to be inefficient but also policies and approaches related to educational investment 

policies need to be revised to move from pay-as-you-go mechanism to self-aid plans. Such 

revision is about the financing mechanism and options available for students to finance their 

educational expenses.  

Similar to the concept of the personal saving plan which introduces an alternative solution to 

avoid the disadvantages and pitfalls of the pay-as-you-go mechanism; this study suggests income 

security plan based on self-aid approach that helps an individual to use her/his own lifetime 

income to manage the risk of not having sufficient income to pay for education expenses.   

This paper proposes a comprehensive approach to income security aimed at tackling poverty 

and its causes. It suggests a life course plan in which each individual has a personal saving 

account through which s/he adds or receives transfers during different stages of their lifecycle to 

achieve lifetime income smoothing. We refer to this plan as Human Capital – Income Security 

(HCIS). HCIS adopts a self-aid approach and enables students to borrow utilizing their future 

income as collateral to pay for their education expenses with deferred repayment. It also helps 

the subscriber to manage retirement benefits during old ages.  

This plan benefits from the insurance criterion of pooling similar risks to deal with 

uncertainty concerning future income. It enables students to pool a fraction of their future 

earnings with others’ earnings, in the same way as insurance companies do when they allow 

individuals to pool their risk with others who face similar risks. Thus reduction in uncertainty for 

the student translates into greater uncertainty for the insurer (Vandenberghe, 2004). However, 

the insurer is in a much better position than the student to diversify risk and if processing a large 

number of subscribers, can benefits from the law of large number so that there is a less 

uncertainty about future income. Thus, the suggested plan relies on two different pillars: the first 

concerns the introduction of a sustainable borrowing mechanism. The second pillar is to help the 

individual to obtain retirement benefits during old age.  

 

2. HUMAN CAPITAL INVESTMENTS 

 

Human capital refers to knowledge and skills of individuals. Previous schooling, computer 

training courses, for example, are accumulated capital that enhance an individual's personal 

values whether in the labor market or everyday life over much of her/his lifetime (Becker, 1998). 

Therefore, economists regard investment in education, training, and medical care to be similar in 

many ways to investment in physical assets. The underlying idea is that people possess skills, 

and knowledge which are viewed as a form of capital enabling them to increase productivity. 

Therefore, a person will invest in his self at the present time to achieve greater rewards later in 

the form of higher level of earning, greater job satisfaction over one's lifetime and a greater 

appreciation of nonmarket activities and interests (Becker, 1964).  

                                                 
3
 Franko Modigliani was awarded Nobel Prize in economics for his pioneering research in several fields of 

economic theory that had practical applications. One of these was his analysis of personal savings, termed the 

lifecycle theory. 



1001 

 

Education is a fundamental component of human capital, and is recognized for its positive 

impact on alleviating poverty, reducing child labor, and, in the long run, contributing to the 

growth of the economy as well as to the whole social development process of any society. It is 

the most effective way to increase social mobility among young people with poor backgrounds 

(Becker, 1993).  

Student's investment in higher education is made with the expectation that the future 

financial returns from acquired skills and increased income will outweigh the current costs, both 

direct and indirect (Becker, 1993 and Perkins, 2003). 

Defining wealth in the form of human capital as present and future earnings due to education, 

training, knowledge, skills, and health, lead to estimates in developed countries that place the 

value of human capital at three to four times the combined value of stocks, bonds, housing, and 

all other physical assets (Becker, 1997). Such estimates should not be surprising since wages and 

salaries account for 75% of the national income in these countries. 

Empirical studies aimed at determining the internal rate of return of educational investments 

are numerous. Psacharopoulos and Patinos (2002) found that the worldwide rates of return for 

investment in higher education are approximately 19% per year.  In the developing countries, the 

rates of return are even higher. For example, in Sub-Saharan Africa, it is estimated to be 27.8% 

per year (Carver, 2004). Additionally, Becker (1964) found that the secondary school rate of 

return in USA is 28% and the college rate of return is 14.8%. 

These empirical studies are descriptive in nature and faced by a large number of challenges 

and methodological disagreements. For example these studies use income as the only measure 

for return on investment, which neglects other benefits of educational investments, such as 

enhanced social opportunity or status. However, these studies often provide a major contribution 

namely policy enlightenment which promotes investment in education and ensures that low 

income families in particular make educational investments (Carver, 2004).    

    

3. FINANCING INVESTMENT IN EDUCATION 

 

Investment in education has usually been the responsibility of government and/or individual 

families. Financing and supporting investment in education are commonly carried out through 

two different approaches: 

 Supply side support: in which government supports human capital investment in 

education through general investment in schools and universities. In this approach, 

education is theoretically an unconditional free service.  

 

 Demand side support: every student pays for her/his education expenses. Individual 

financial aid is used to pay for students who have insufficient funds to pay for their 

capital investment. This approach is currently utilized in USA, and it is a vital component 

within demand side support that makes contributions to education for over half of all 

students entering colleges and universities (Perkin, 2003).  

 

With the many problems facing supply side support, there is a shift away from societal/ supply 

side support, with more responsibility being handed to students themselves (Perkins, 2003). The 

demand side support is built on two main sources to finance education expenses (Perkins, 2003): 

 Family contribution: parents and other family resources 

 Financial aid packages which can be accomplished through: 
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o Gift aid: grants, scholarships, and fellowships 

o Self-help aid: employments and loans 

 

Many ideas and plans were experimented and discussed in USA to present a fair borrowing plan 

to finance human capital investment in education expenses (Perkin, 2003).  

 

3.1 Student Loans (All Debt: Fixed Repayment Stream) 

 

Student financial aid started with gifts and fixed student loans. The limited government budget 

and the high default rate of student loans put a heavy burden on the lenders. Accordingly, 

subsidized federal loans by which the U.S. government subsidizes almost all student loans 

became a popular means for financing higher education, and today are an important resource for 

most students. Such loans are carried out by either directly issuing them at a low interest rate, or 

guaranteeing the creditworthiness of the borrower. However, they are not the optimal solution 

since instead of addressing the problem; they transfer the risk of the investment to the taxpayer 

(Wirt et al, 2002). 

During the 1999-2000 school year, 29% of the 16 million enrolled undergraduates in the U.S. 

took out student loans averaging $5100 each for total undergraduate loan amount of $24.4 billion 

(Perkins, 2003).  

 

3.2 Income-Contingent Loans (Percentage Of Income Loan: Variable Repayment Stream) 

 

Friedman first suggested his idea about future income loans in 1962 (Friedman, 1962). He 

proposed that students pay back a percentage of their income over a specified interval of time. 

Eventually, a hybrid between traditional fixed repayment loans and Friedman’s proposal came 

into being in the form of income-contingent loans. This is a financing instrument that requires 

the borrower to pay back a percentage of income until the loan principal is paid off (Chapman, 

2003).  

 

3.3 The Human Capital Contract  

 

Currently, Friedman’s ideas are considered as a way to address increasing education costs and 

limited government resources. The human capital contract attempts to create financial 

instruments that allow equity-like investments in higher education that can attract private capital 

to the human capital investment market. This instrument is based on a contract by which an 

individual obtains resources to finance his or her education by giving back a percentage of 

her/his income over a predefined period of time after graduation. Such an instrument is referred 

to as a human capital contract. Palacios explains that human capital contracts are convenient for 

students and investors for at least four main reasons (Palacios, 2003):  

1- They relieve the student from any uncertainty about being able to make fixed loan 

payments, 

2- They virtually eliminate default due to financial distress, 

3- They are needs blind, 

4- They give a subsidy to those who most need it during the repayment period as an 

individual pays a percentage of her/his income with no obligation to repay the full loan in 

the case of low income career.  
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4. INCOME SECURITY DURING OLD AGE 

 

Currently, there is a policy debate in many countries concerning the roles and mechanism of 

pension schemes. Modigliani et al (1999) argued that the pay-as-you-go system must be 

discarded since it is financially unsound. Their underlying line of thought is that since 

contributions (which are dependent solely on the active working age population and basically a 

type of mandated saving) are used entirely to finance pensions, the capacity to pay current 

pensions is sensitive to unforeseeable changes in the demographic structure and the growth trend 

of productivity. 

A move towards funded pension schemes is currently under discussion in many developed 

and developing countries – as a pension reform option. The personal saving plan is a suggested 

alternative, in which each person pays forward for her\his retirement benefits. This move comes 

in response to the unsuccessful reforms of unfunded schemes (World Bank, 2002). 

 

5. MODIFICATION OF THE HUMAN LIFE-CYCLE 

 

The life-cycle approach is a potentially powerful tool that could be used to plan current/future 

outcomes/transfers of different age groups across different stages of an individual's lifecycle 

(Modigliani, and Jappeli, 2003). The previous discussion concerning investment in education 

during young ages and saving for retirement benefits during old ages illustrates the need for a 

modified classification of the human lifecycle that enables a new, more efficient mechanism.  

 

5.1 Traditional Human Life-Cycle And The Pay-Get Transfer Mechanism 

 

Economically, the life cycle of an average person is commonly divided into three successive 

stages, young age, work, and old age/ retirement, as Figure 1 shows. While people produce in 

excess of their consumption during the middle stage, the reverse is true during the first and last 

stages. Therefore, the working age population accumulates savings for their future consumption. 

These savings are called transferred wealth, which is defined as the present value of the 

difference between the transfers that an individual expects to receive in the future, and the 

transfers s/he expects to give (Lee et al, 2000). The Life-Cycle approach posits that the main 

motivation for saving is to accumulate resources for later expenditure and in particular, to 

support consumption at the same standard during retirement (Modigliani and Jappeli, 2003). 

Thus, saving should be positive for households during their working span and negative during 

retirement, so that wealth should be bell-shaped, as Figure 2 illustrates. 

 

Young age  
Work 

(Pay) 

Old age retirement 

(Get) 

Traditional Pension Plan Coverage 

Pay-get mechanism 

Figure (1): Traditional human life-cycle Pay-get transfer mechanism 
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Figure (2): Wealth accumulation according to traditional life cycle assumptions 

Pay-Get Mechanism 

 

 

 

 

 

  

Young age dependency Working stage Retirement stage 

 

 

The traditional pension plan is a transfer mechanism that helps an individual to achieve income 

security during work and retirement. An individual pays contributions in advance during the 

employment stage and collects benefits during the retirement stage. Therefore, it is called a pay-

get mechanism. 

The redistribution of income through the work and retirement stages of the life cycle aims at 

achieving income security during old age. It is either enforced by law such as public pension 

plans, or reflects individual decisions (Abdallah, 2004).  

 

5.2 Reclassification Of The Human Life-Cycle And The Get-Pay-Get Transfer Mechanism  

 

Practically, an individual cannot join a pension plan or any other income security plans before 

s/he starts working. However, the young age dependency stage may extend until the age of 20 or 

25 years or sometimes even later. This stage is crucial in building human capabilities, which in 

turn significantly improves the prospective chances for individuals to prosper during the 

following stages (Rank & Hershl, 2001).  

This study suggests dividing the young age dependency stage presented above as part of the 

traditional life cycle into two stages (figure 3). An individual is supposed to receive educational 

support transfers during the latter stage. The first stage lasts up to the end of the preparatory 

school if an individual starts receiving educational transfers during the high school or it lasts up 

to the end of the high school if s\he starts receiving educational transfers during university. The 

second stage continues from this age and ends upon being employed in a paying job. The first 

stage is referred to as the childhood dependency stage while the second is referred to as the pre-

employment stage. Thus, the human life cycle according to this new classification is divided into 

four stages, namely childhood dependency, pre-employment, working, and the retirement stages.  
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The new human life cycle assumptions are that the individual relies only on her/his own life time 

income starting in pre-employment stage, and that the main motivation for saving is to 

accumulate resources to finance previous and later expenditures. Therefore, saving should be 

positive during the working span and negative during the pre-employment and retirement stages. 

According to the new classification, wealth takes the pattern illustrated in figure 4. 

As shown in this figure, the wealth curve accumulates in the negative direction during the 

pre-employment stage, and then starts increasing during the working stage, reaching a peak at the 

retirement age, at which point it starts decreasing again. 

The most important risk related to the pre-employment stage is insufficient human capital 

investment. This leads to many problems both in the short and long term. In the short term could 

lead to inadequate skills development which could result in poor prospects for employment. In 

addition, it could also lead to long-term unemployment or low wage employment which could 

result in inter-generational transmission of poverty, and subsequent negative consequences. 

The risk of not having enough resources during the retirement stage is an insurable risk which 

can be covered by a public pension plan. However the risk related to not having sufficient 

qualifications to generate adequate income, has a very crucial impact on person’s earning 

potential and needs more attention and risk management.  

 

Figure (4): Wealth accumulation according to the modified life cycle stages 

Get-Pay-Get Model 

 

 

 

 

    

Childhood 

dependency 

    Pre-

employment 

             W   o    r    k Retirement  

 

      

Childhood dependency Pre-employment 

(Get) 

Work 

(Pay) 

 

Retirement 

(Get) 

HCIS plan 
Get-pay-get mechanism 

Figure (3): Modified classification of human life-cycle 

Get-pay-get transfer mechanism 
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Preventive risk management is an effective option in this regard that consists of increasing 

human capital investment in education during the pre-employment stage, which prospective 

chances of obtaining a adequate work and income,  and reduces the possibility of falling into 

poverty in the future. We regard this form of human capital contract as the most promising 

avenue of financing education expenses during young ages. 

 

6. THE PROPOSED HCIS PLAN 

 

The proposed HCIS plan introduces a comprehensive income security plan covering risks related 

to income during pre-employment, work and retirement stages. A borrower student receives a 

certain amount of money to invest in their education, and then repays part of their income during 

their work stage to pay back their study loan as well as save for the retirement stage. The repaid 

amounts for their study loan and retirement benefits are uncertain since they are dependent on 

the person’s capacity to pay. If the career path of the borrower/student is less profitable than 

expected, s/he repays less than the amount of her/his study loan and benefits from the insurance 

of pooling similar risks to manage uncertainty concerning future income. Insurance organizations 

benefits from the law of large number, reducing the uncertainty of their income. High-income 

earners will cover the losses resulting from low-income earners.  

 

The HCIS plan manages three risks relates to income security at different stages of the lifecycle 

including: 

- the risk of insufficient resources to finance an investment in education during the pre-

employment stage, 

- the risk of not having sufficient income to pay back study loans during the work stage 

- the risk of insufficient income during old age.  

The HCIS plan has the following main features: 

1. It targets support for higher educational levels, 

2. It is self-aid type, i.e. each individual pays for her/his own educational expenses during 

the pre-employment stage, 

3. It focuses on  demand-side support, 

4. It is an insurance plan not a welfare program, i.e. it relates benefits to contributions. 

 

6.1 The HCIS Plan Targets Support For Higher Educational Level 

 

Concerning support for education there are two different levels with different tools and 

objectives: 

- Minimal educational support: the main objective here is to reduce illiteracy rate and 

enable basic education for all. 

-  High educational support: such plans aim at supporting those who have demonstrated 

willingness and ability to succeed at high school and university levels. 

 

While the first approach has received and continues to receive attention, the second approach 

is crucial for the progress of any country. The second approach supports those who become top 

bureaucrats, planners and most importantly those who make great contributions to the 

development of any nation.  

 



1007 

 

Providing fair chances in education by means of an even amount of support for everybody could 

be useful for the first objective (the basic educational level). However during the high school and 

university period it causes disappointment for those who pay more efforts in their study. The 

HCIS plan attempts to contribute to the second objective through supporting individuals 

according to their demonstrated willingness and ability to succeed. 

 

6.2 The HCIS Plan Is Self-Aid Type 

 

Transfers are a very important tool used in poverty alleviation and income security in particular. 

In this regard, there are three types of transfers to be considered: 

- Inter-generational transfers: it is a type of income redistribution between generations, for 

example parental transfers to finance their children's education and health care. Transfers 

from young workers to retirees in the theoretical model of Pay-As-You-Go pension 

schemes and national investment in public education provides examples of such transfers.  

- Between-group transfers in the same society: this relates to income redistribution among 

different groups in the same society. For examples taxes collected from rich people for 

the benefit of poor individuals or families. 

- Self transfers from one lifecycle stage to another for the same person: This refers to 

transfers made by an individual through different stages of her/his life cycle. 

 

Our suggested plan is a self-transfer strategy that depends mainly on an income redistribution 

mechanism through which an individual transfers funds from the working stage where there are 

surplus funds to other stages of financial needs thereby achieving better income smoothing 

during her/his different lifecycle stages. 

 

6.3 The HCIS Plan Focuses On Demand-Side Support   

 

As discussed in section 3, focusing on the supply-side support leads to low quality of services 

and a waste of resources.  Such resources could be used more efficiently in helping poor people 

if demand-side approach were adopted.   

The supply-side support is important for basic education during the young age dependency stage, 

whereas the demand-side support is more efficient during the pre-employment stage. Our study 

adopts the demand-side support.  

 

6.4 The HCIS Plan Is An Insurance Plan Not A Welfare Program 

 

Social security adopts two different approaches; welfare programs and insurance plans. The 

underlying notion of classification is whether the individual contributes to the program. Welfare 

programs assume that individuals do not pay contributions. These include many programs such 

as social assistance, social safety nets, social funds, and child labor reduction programs. Social 

insurance generally refers to systems in which workers themselves make contributions to fund 

the underlying programs. Such programs are designed to assist individuals, households, and 

communities to better manage certain contingencies related to incapacity for work due to illness, 

unemployment, old age, and death of the breadwinner, for example. Such contingencies are 

stated in ILO's 1952 International Labor Conference, at which the Social Security Minimum 

Standards Convention, (N° 102), was accepted (ILO, 2000).  
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Social insurance systems should ideally be designed as fully funded insurance schemes, 

without any welfare considerations. This is the basic idea of those who propose personal saving 

schemes as a reform option for retirement plan.  

Insurance plans are contributory transfers that can be seen as a type of borrowing mechanism 

in which individuals pay for transfers backward or forward. A retirement pension plan is an 

example of a forward contributory transfers in which the insured person pays in advance for 

her/his retirement benefits. In the backward contributory transfer, an individual receives transfers 

and then later repays the loans, for examples student loans. Human capital contracts, future 

income loans, and collateral loans are recent forms of backward contributory transfers. 

Our suggested HCIS plan can be considered a type of social security program. It is aims to 

support individuals during the pre-employment stage for high school and university education. It 

is also a type of insurance plan that adopts both backward and forward contributory transfers. 

The backward transfers are used to finance the human capital investment during the pre-

employment stage, whereas the forward transfers are used to finance the retirement benefits 

during the retirement stage. 

 

7. HUMAN CAPITALS – INCOME SECURITY (HCIS) PLAN: MECHANISM,  

ASSUMPTIONS AND MODEL DESCRIPTION 

 

Pensions linked to contributions are currently the dominant strategy of old age income security 

policies and a move towards funded pension schemes is currently under discussion in many 

developed and developing countries, as a pension reform option (Palacios and Sluchynsky, 

2006). The personal saving plan is a suggested alternative, in which each person pays forward 

her\his retirement benefits (Abdallah, 2004). This idea was the starting point for our suggested 

HCIS plan that helps an individual to manage their needs and surplus during different periods of 

their life cycle. 

This section illustrates the mechanism of our suggested HCIS plan, then introduces 

assumptions, and develops the actuarial model.  

 

7.1 Human Capital - Income Security Plan (HCIS) Mechanism 

 

Figure 5 represents lifetime income needs and surplus during different life cycles for a typical 

university graduate. 

The above diagram shows that an individual starts with the young age dependency stage, which 

extends till age (g). During this stage an individual does not receive any transfers and s/he is 

mainly supported by her/his parents.  

During the pre-employment stage, an individual receives educational transfers, which stop at age 

(b), when an individual starts the work stage and pays contributions to our suggested plan. 

Finally (e) represents the retirement age. 
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Figure (5): Lifetime income needs and surplus 

General model 

 

Young age  

 

Pre-

employment 

  

 

Work 

 

Retirement 

 

Age                                       g                         b                                                                                       e      

Our suggested plan coverage 

 

 

 

It can be seen that the young age dependency and retirement stages are all periods of financial 

need with no income generated. The work stage is the only period of life during which an 

individual generates income and incurs a surplus. 

We will develop a generalized actuarial model in this section after introducing the underlying 

assumptions. The generalized Model allows implementing our suggested HCIS plan for different 

scenarios, i.e. to enable educational support during university study period only or to encompass 

the high school study period within the pre-employment stage. 

 

7.2 Assumptions 

 

The following assumptions are required for our suggested HCIS plan: 

i. The human lifecycle is classified into four stages, namely, young age dependency, pre-

employment, work, and retirement stages. 

ii. A subscriber to our suggested HCIS plan is assumed to join and start receiving 

educational transfers at age (g). 

The pre-employment stage extends to the age (b), at which a subscriber starts to work. 

The value of (b) depends on the graduation age (v) and the unemployment period (u). 

During an unemployment period, subscribers receive the same amount of transfers s/he 

receives during their education period.  

b = v + u 

v = g + educational support period 

iii. We consider retirement age to be (e). 

iv. An employee's salary complies with a pre-specified salary scale )(
x

s  and the retirement 

benefits increased by annual increment scale )(
x

k .  

v. During pre-employment stage a subscriber student should receives educational transfers 

during education years and extends to cover unemployment years. Such transfer is 

assumed to amount to a flat annual percentage (t %) of the starting salary. This 

assumption depends on the existence of a reliable expected salary scale for the future 

career path for the subscribing student in each field.    

Traditional pension plan coverage 
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vi. In our plan, a subscriber individual can exit the work stage due to invalidity, death and 

reaching retirement age, according to given age related decrement rates; 
d

xq ,
i

xq  and r

x
q  

consequently. 

vii. Investing in human capital during the pre-employment stage results in  an increase in 

individual’s future lifetime income represented in a shift in the expected salary scale, this 

shift is referred to as (m%).  

viii. Retirement benefits equals to (p %) of final salary )(
e

s . 

ix. We assume the interest rate to be (i %). 

 

7.3 The Model  

 

This section develops the generalized actuarial model for our suggested HCIS plan. The HCIS 

plan helps subscriber individuals to smooth lifetime income over their pre-employment, work, 

and retirement stages of their lifecycle. Each subscriber contributes a percentage of her/his 

lifetime income during the work stage. CTRAD denotes to the required contribution rate for the 

traditional personal saving retirement plan and CHCIS denotes to the required contribution rate for 

our suggested HCIS plan. The required model is developed through 6 steps: 

7.3.1 Developing the main functions of the multiple-decrement table; 

7.3.2 Computing the contingent present value of retirement benefits transfers that an 

individual receives during retirement stage (PVB); 

7.3.3 Computing the contingent present value of contributions paid by workers during work 

stage (PBC); 

7.3.4 Computing the contingent present value of educational transfers that a student receives 

during pre-employment stage (PVT); 

7.3.5 Computing the required contribution rate for the traditional retirement pension plan 

(CTRAD); 

7.3.6 Computing the required contribution rate for the suggested HCIS plan (CHCIS). 

 

7.3.1 Definitions, Notations and Basic Functions 

 

This subsection presents definitions, notations, and functions needed to find the present values of 

contributions and benefits. Our model is a multiple-decrement model that is based on some 

probabilistic functions deduced from the multiple-decrement table with causes of decrement 

includes death, invalidity, and retirement. Our model uses the distribution of two random 

variables T(x) and J(x) and defines 

 

3,2,1,0],)(Pr[
)(

 jzjJzxTq
j

xz            (1) 

 

The symbol )( j

xz q  can be interpreted as the probability that a person aged x will exit within t 

years due to cause j. )( j

xz q is the joint p.d.f. of T(x) and J(x). 

 

If z = 1, that permits us to omit the prefix in the symbols defined above, and we have 

 

]1Pr[ jcausetodueyearwithindiewillxagedpersonaq j

x   (2) 
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Now consider the following notations, 

 

xl : number of active subscribers surviving at exact age x. 

 
d

xq : the probability of decrement during the next year due to death 

 
d

xd : number of exits due to death in the year of age x to x + 1. 

 

 d

xx

d

x pld   (3) 
 

i

xq : the probability of decrement during the next year due to invalidity 

 
i

xd : number of retirements due to invalidity in the year of age x to x + 1. 

 

 i

xx

i

x pld   (4) 

 
r

xq : the probability of decrement during the next year due to age retirement 

 
r

xd : number of retirements due to attainment of retirement age x. 

 

 r

xx

r

x pld   (5) 

,600  xford
r
x

 

and, r

x

i

x

d

xxx dddll 1  (6) 

 

Let v denotes to the present value of one financial unit moved one year backward using a given 

discount rate (i), then 

 

 
i

v



1

1
 (7) 

 

Therefore xv is the present value of one financial unit received after x years. 

Assuming that every surviving individual at age x during the work stage gets one financial unit 

as salary, and that there are 
xl survivals, then the present value of LE 

xl moved backward for x 

years (to the starting age of the life table) referred to as 
xD , is given by: 

 

x

x

x

x

x lvlvD  1  (8) 

 

Since pension fund functions are mid-year funds, then 
xD the mid-year present value, is defined 

as: 
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  1
2

1
 xxx DDD  (9) 

 

The sum of present value of all persons’ (one financial unit) salaries over an age ranging from (x) 

to (x + n) and brought backward for x years (to the starting age of the life table), is given by: 

 





n

t

txxn DN
0

 (10) 

 

If we include the salary xs  in equation (9) and equation (10), we obtain x

s D  and
x

s

y N , as follows: 

x

s D  is the present value of the salaries of 
xs  received by all living persons at age x, brought to 

the starting age of the life table:  

 

xxx

s DsD   (11) 

 

x

s

y N  is the sum of the present values of all salaries received by all living persons between age x 

and age x + y, brought to the starting age of the life table, and assuming a given salary scale xs : 

 





y

t

tx

s

x

s

y DN
0

 (12) 

 

7.3.2 Contingent Present Value Of Retirement Benefits (PVB)  

 

Let PVB refer to the contingent present value of a retirement benefits of one financial unit per 

annum starts from the retirement age (e ) and increase according to retirement benefit increment 

scale 
xk , brought to age x ( x <= e).  PVB is given by the following formula.  

 

 k

e

x

exe a
l

r
vPVB   (13) 

 

e
ka : is the contingent present value of whole life retirement benefit annuities of one financial 

unit that starts at age e and brought to age e. 

 

e

k

ek

e
D

N
a   (14) 

and  



99

et

tt

k

e DkN  

x

e

l

r
: is the probability that a subscriber aged x attain retirement age (e) so s/he would be eligible 

to retirement benefits.  Let  k

ee

er

e arvC 
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Then, 

x

r

e

x

x

k

ee

e

D

C

lv

arv
pvb   (15) 

 

Since retirement benefits represent only a percentage p of the final salary at age (e).  

 

PVBspx e )(  (16) 

x

r

e
e

D

C
spx )(  (17) 

x

r

e

x

e
x

D

C

s

s
spx )(  (18) 

 

xs  is the salary at age x and .bxforss bx   Let r
ee

r
e

s
CsC   and  

 

x

s

r

e

s

x
D

C
spx )(  (19) 

 

)(x  Represents the contingent present value of annual whole life retirement benefits equals to 

p% of the final salary ( es ). The contingent retirement benefits starts upon retirement at age e, 

brought to age x. 

 

7.3.3 Contingent Present Value Of Contributions (PVC) 

 

The contingent present value of all salaries at age y brought to age x is  

 

x

yxy

y
l

l
vs   (20) 

 

ys refers to the salary scale at age y. On the assumption that individuals contribute c% of 

their salaries to the HCIS plan and these contributions are paid at mid years, then the 

contingent present value of contributions collected from covered persons at age y and 

brought to age x is PVC 

x

yxy

y
l

l
vscPVC    (21) 

x

y

x

y

y
l

l

v

v
scPVC   (22) 

Using the definition of xD , 

x

y

y
D

D
scPVC   (23) 
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Taking the mid-year functions, 

 

  yyyy DDDD   )(5.0 15.0  

x

y

y
D

D
scPVC    (24) 

x

y

x

y

x
D

D

s

s
scPVC   (25)

 

 

and based on the definition on the 
y

sD  (mentioned before), the required present value would be: 

 

x

s

y

s

x
D

D
scPVC   (26) 

 

Summing over y from the age of starting work (b years old) till the end of the work stage (e years 

old) gives the total value of the contributions paid by all working persons during the work stage 

and brought to age x:  

x

s

b

s

be
x

e

by x

s

e

by

y

s

x

x

s

y

s

x
D

N
sc

D

D

sc
D

D
sc 1

1

1












 (27) 

where   




 
1

1

e

by

y

s

b

s

be DN . 

xs refers to the salary scale at age x, and bxforss bx  . Let )(x  represents the 

contingent present value of contributions working individuals pay during work stage (from age b 

to age e), brought to age x.  

x

s

y

s

be

x
D

N
scx

1
)(


  (28) 

and bxforss bx  . 

 

7.3.4 Present Value Of Educational Transfers During Pre-Employment Stage (PVT) 

 

The present value of the transfers made to an individual when s/he is y years old, and brought to 

age x is computed as follows: 

 

xy
l

l
vst

x

yxy

b    (29) 

 

Let (t %) denotes the percentage of the starting salary that is paid annually to individual as 

educational transfers, and assumes that an individual receives capabilities support transfers at 

mid-years. Thus PVT represent the contingent present value of the transfers paid to a covered 

person at age y and brought to age x. 
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x

yxy

b
l

l
vstPVT    (30) 

x

y

x

y

b
l

l

v

v
stPVT   (31) 

 

Using the definition of 
xD  then, 

 

x

y

b
D

D
stPVT   (32) 

 

Since yyyy DDDD   )(5.0 15.0 , then, 
x

y

b
D

D
stPVT  . Summing over y from age g (the 

starting age of receiving educational transfers) to the age b (the age of finishing pre-employment 

stage), and brought to age x (the comparison date). The contingent present value of educational 

transfers 

 

x

ggb

b

b

gy x

b

gy

y

b

x

y

b
D

N
st

D

D

st
D

D
st

1
1

1












 (33) 

where,  




 
1

1

b

gy

yggb DN  and 
ggb N1

 refers to the sum of all transfers that are made to an 

individual during pre-employment stage, starting at age g and finishing at age b-1. Letting )(xT  

represents the contingent present value of all transfers that are paid to living individuals during 

pre-employment stage starting at age g, and brought to age x assuming t% of the starting salary 

scale 
gs  as annual transfers. 

 

x

ggb

b
D

N
stxT

1
)(
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Now, we will compute the required contribution rate for the current pension plan and the 

required contribution rate for the suggested HCIS plan. 

 

7.3.5 The Required Contribution Rate For The Traditional Retirement Pension Plan 

 

By equating the present values of total contributions and total benefits for the individual brought 

to age x, we get the required contribution rate for the traditional pension plan Tradc , 
 

)()( xx    (35) 
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For retirement benefits equal to p% of the final salary es , let Tradcp 1
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7.3.6 The Required Contribution Rate For The Suggested HCIS Plan 

 

By equating the present values of total contributions and total benefits (educational and 

retirement transfers) for a covered person brought to age x, we get the required contribution rate. 

Also, to take expected shifts in salary scale into consideration, m% shift is assumed. This shift 

affects the annual salary 
xs  and the retirement benefits value which becomes p% of the shifted 

final salary. Moreover, shifting the salary scale does not affect the educational transfers. 
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When there is no shifts in the salary scale then m = zero, and the required contribution rate 

becomes; 
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For retirement benefits equal to p% of the final salary, let  HCIScp 1
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Once again if there is no shifts in the salary scale then m = zero; 

 

 
r

e

s

b

s

be

ggbb

r

e

s

HCIS
CN

NstC
c










1

1
      (59) 

 

 

8. DATA 

 

The general actuarial model presented in the previous section includes 5 age related functions 

and 9 parameter. Such model could be applied for two main alternative study path programs 

using suitable values for the involved parameters: 

- Program One: 7 years support - University graduate model: this includes high school and 

university periods within the pre-employment stage. 

- Program Two: 4 years support - University graduate model: this includes only the 

university period. 

The following table shows the referred functions and parameters included in the model with its 

assumed values. 

 

In dealing with mortality rates actuaries in the Social Insurance Fund for Government Employees 

(SIFGE) use the English Life Table A49/52 ULT to estimate the most suitable graduation for the 

Egyptian population using historical data from the fund. Periodic revisions are implemented to 

readjust the fitted rates, and the last revision was implemented in 2004 (SIFGE, 2009).  

 

9. RESULTS OF THE SUGGESTED MODELS 

 

In this section, the suggested models are tested through applying the male death rates, invalidity 

rates, and salary scales that are used in periodic actuarial pension plan evaluations by the Social 

Insurance Fund for Government Employees in Egypt. 

According to the suggested HCIS plan, a preparatory school graduate will join high school at 

age 15 and start university education at age 18, get support during the pre-employment stage and 

get retirement benefits by age 60 years. Results are introduced for both the 7 years support 

program and the 4 years support program. Three different scenarios are examined for each 

educational program assuming three alternatives for unemployment period (zero, one, and two 

years). We show the required contribution rates for both the traditional and the suggested plans, 

after which we examine the required shift in salary scale that enables an individual to finance the 

HCIS program, without changing the disposable income received during the work stage and the 

retirement benefits received during the retirement stage.  

Three important notes should be considered before going through these results. Firstly, the 

objective of both the traditional and our suggested income security plan is to smooth lifetime 

income during different covered life cycle stages. Secondly, an individual continues to receive 
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transfers during the unemployment period, and thirdly, the same salary scale is applied to both 

the traditional and suggested plan.  

 

9.1 Program One: 7 Years- High School And University Support   

 

Program One assumes a 7 years-high school and college support, and 60 years as retirement age. 

Table (2) shows results of Program One for three different unemployment scenarios assuming 

zero, one, and two years unemployment. The table also shows results for three salary scale shift 

scenarios assuming zero, 10%, and 10.68%. The 10.68% shift in the salary scale enables the 

subscriber person to finance the HCIS plan and keep the same disposable income during work 

and retirement he used to achieve under the traditional pension plan. The redistribution of 

lifetime income is shown as a percentage of the total lifetime income. 

 

Table (1)  Parameters' definitions and assumed values within the HCIS model 

Serial 
Paramete/ 

Function 
Definition Assumed values 

1 g  The age of starting pre-

employment stage 

15 years old to get support during high 

school and university, and 18 years old 

to get support during university study 

only. 

2 v  Graduation age 22 years old for university graduate  

3 u  Unemployment period in 

years 

Zero\ 1\ 2 years 

4 b  The age of starting work 

uvb   

22\23\24 for university graduate 

5 e  Retirement age 60  years  

6 p  % of the final salary paid as 

retirement benefits 

It enhances smoothing mechanism 

7 t  % of the starting salary paid 

as educational transfers 

50% 

8 m  Shift in salary scale zero \ 10%\ the required shift 

9 i  Interest  rate 8.5% 

10 
xs

 
Annual salary scale  

xx ss 10.11 
          for      b < x < e 

11 
xk
 

Retirement benefit annual 

increment scale  
xx kk 05.11 

        for          x > e 

12 d

xq
 

Decrement rate at age x due 

to death  

Based on the experience of the Social 

Insurance Fund for Government 

Employees in Egypt.  13 i

xq  
Decrement rate at age x due 

to invalidity  

14 r

xq  Decrement rate at age x due 

to retirement 
1r

xq      for    x =e 

 

 

From column one in table (2) and under the traditional pension plan with no unemployment 

period and 60 years old as a retirement age, a university graduate is required to pay 24.02% of 

his lifetime income to save for his retirement benefits. This person achieves smoothing at 
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75.98%; meaning that he keeps 75.98% as disposable income. Moreover, he receives retirement 

benefits during old ages equals to 75.98% of his final salary that increases annually by 5%.  

From column two, one year unemployment raises the required contribution rate to 24.42% and 

achieves smoothing at 75.58%. From column three, two years of unemployment raises the 

required contribution rate to 24.84% and achieves smoothing at 75.16%.  

From column one and under Program One of our suggested HCIS plan with no 

unemployment, no salary scale shift, and 60 years retirement age assumption. A subscriber 

student receives 50% of his expected starting salary as educational transfers during high school 

and university and uses 10.68% of his lifetime income to pay back the educational transfers he 

has received, and uses 21.45% of his lifetime income to save for age retirement benefits amount 

to 67.87% of his final salary and increases by 5% annually. 

 

Table (2): Result for Program One Lifetime income redistribution as percentage of lifetime 

income 

Column's number One  Two  Three Four  Five  

Unemployment period (u) 
u = 

zero 
u = 1 u = 2 

u = 

zero 

u = 

zero 

Salary scale shift (m) 

For HCIS 

m = 

zero 

m = 

zero 

m = 

zero 

m = 

10% 

m =  

10.68% 

Traditional 

pension plan 

Tradc  24.02% 24.42% 24.84%   

Disposable 

income )1( Tradc  
75.98% 75.58% 75.16%   

Suggested 

HCIS 

Contribution 

rate 

Cost of 

retirement 

transfers 

21.45% 21.19% 20.83% 20.96% 20.93% 

Cost of 

educational 

transfers 

10.68% 13.22% 16.13% 10.43% 10.42% 

HCISc  32.13% 34.41% 36.96% 31.39% 31.35% 

Disposable income  

)1( HCISc  67.87% 65.59% 63.04% 68.61% 68.65% 

 

 

A subscriber under Program One of the HCIS plan is required to pay 32.13% in total as a 

contribution rate to achieve smoothing at 67.87%. From column two, one year of unemployment 

under the HCIS plan raises the required contribution rate to 34.41% and achieves smoothing at 

65.59%. Meanwhile, from column three under the HCIS plan, two years of unemployment raises 

the required contribution rate to 36.96% and achieves smoothing at 63.04%.   
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Better investment in human capital is expected to have its impact on individual’s capabilities 

and his future income through shifting the salary scale. Therefore, column four in the above table 

shows the impact of a 10% shift in the salary scale on the required contribution rate for the 

suggested HCIS plan and the resulting smoothing level. With 10% shift in the salary scale under 

Program One, a subscriber person is required to use 31.39% of his shifted salary as a 

contribution rate and achieves smoothing at 68.61% of the shifted salary. Also, from column 

five, a 10.63% shift in the salary scale under Program One enables this subscriber to keep the 

same amount of money he used to receive under the traditional pension plan as disposable 

income during work and retirement stages. In this case the required contribution rate is 31.35% 

of the shifted salary and the smoothing level is 68.65% of the shifted salary. Table (3) shows the 

redistribution of an individual's salary in a given year represented in financial units assuming that 

this person receives 100 financial units for the referred year.  

 

Table (3): Results for Program One 

Distribution of annual income at age x when the annual salary = 100 financial units 
Column's number One  Two  Three Four  Five  

Unemployment period (u) u = zero u = 1 u = 2 u = zero u = zero 

Salary scale shift (m) 

For HCIS 
m = zero m = zero m = zero m = 10% 

m =  

10.68% 

salary  100 100 100 110 110.68 

Traditional 

pension plan 

Tradc  24.02 24.42 24.84   

Disposable income 

)1( Tradc  75.98 75.58 75.16   

Suggested HCIS 

Contribution rate 

Cost of retirement 

transfers 
21.45 21.19 20.83 23.06 23.17 

Cost of educational 

transfers 
10.68 13.22 16.13 11.47 11.53 

HCISc  32.13 34.41 36.96 34.53 34.70 

Disposable income  

)1( HCISc  67.87 65.59 63.04 75.47 75.98 

 

 

From column one in table (3) with no unemployment period, and 60 years old as retirement 

age, the disposable income under the traditional pension plan equals to 75.98 financial units, and 

the disposable income under the HCIS plan equals to 67.87 financial units. From column five, 

with 10.68% shift in the salary scale, the disposable income under the HCIS plan becomes 75.98 

financial units (the same level of disposable income under the traditional pension plan). 

The following graph shows the wealth accumulation curve according to Program One 

assuming no unemployment period for both traditional and suggested HCIS plans. For the 7 

years high school and university support plan, the wealth curve starts with the age of joining high 

school and receiving education support transfers (age 15). The curve decreases until it reaches its 

minimum just before joining a paid job, at which point it increases until reaching its peak by the 

retirement age, after which the curve starts decreasing again.  The graph also shows the annual 
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increasing salary scale during the work stage and the disposable income during the pre-

employment, the work, and the retirement stage. Income increases during the work stage by 10% 

)10.1(
1 xx

ss 
  and retirement benefits increases annually by 5% )05.1(

1 xx
kk 

 . 

 

9.2 Program Two: 4 Years- University Support Model  

 

This model assumes 4 years of university support program and a retirement age of 60 years. 

Table (4) show results for three different scenarios assuming zero, one, and two years of 

unemployment period. In addition to three different scenarios for the salary scale shift assuming 

zero, 10%, and 5.34%. The redistribution of lifetime income is shown as a percentage of the total 

lifetime income. 

 

Figure (6): Salary scale, disposable income, and probabilistic wealth accumulation curve  

Program One - No unemployment – 60 yrs retirement age 

 

 
 

 

Figure (7) shows the required shift (10.68%) in the salary scale which enables an individual 

to finance education expenses and keep the same level of disposable income he used to receive 

during work and retirement stages under the traditional plan.  

 

 

Figure (7): The probabilistic wealth accumulation curve and the required shift in salary scale 

Program One - No unemployment – 60 yrs retirement age  
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From column one in table (4), a subscriber under Program One of the HCIS plan is required 

to pay 28.07% in total as a contribution rate to achieve smoothing at 71.93%. 

From column two, one year of unemployment under the HCIS plan raises the required 

contribution rate to 29.88% and achieves smoothing at 70.12%. Meanwhile, from column three 

under the HCIS plan, two years of unemployment raises the required contribution rate to 31.89% 

and achieves smoothing at 68.11%.   

Better investment in human capital is expected to have its impact on individual’s capabilities 

and his future income through shifting the salary scale. Therefore, column four in the above table 

shows the impact of a 10% shift in the salary scale on the required contribution rate for the 

suggested HCIS plan and the resulting smoothing level. With 10% shift in the salary scale under 

Program Two, a subscriber person is required to use 27.70% of his shifted salary as a 

contribution rate and achieves smoothing at 72.30% of the shifted salary. Also, from column 

five, a 5.34% shift in the salary scale under Program Two enables this subscriber to keep the 

same amount of money he used to receive under the traditional pension plan as disposable 

income during work and retirement stages. In this case the required contribution rate is 27.87% 

of the shifted salary and the smoothing level is 72.13% of the shifted salary. Table (5) shows the 

redistribution of an individual's salary in a given year represented in financial units assuming that 

this person receives 100 financial units for the referred year.  

 

Table (4): Result for Program Two 

Lifetime income redistribution as percentage of lifetime income 

Column's number One  Two  Three Four  Five  

Unemployment period (u) 
u = 

zero 
u = 1 u = 2 

u = 

zero 

u = 

zero 

Salary scale shift (m) 

For HCIS 

m = 

zero 

m = 

zero 

m = 

zero 

m = 

10% 

m =  

5.34% 

Traditional 

pension plan 

Tradc  24.02% 24.42% 24.84%   

Disposable 

income )1( Tradc  
75.98% 75.58% 75.16%   

Suggested 

HCIS 

Contribution 

rate 

Cost of 

retirement 

transfers 

22.73% 22.66% 22.51% 22.43% 22.57% 

Cost of 

educational 

transfers 

5.34% 7.22% 9.38% 5.27% 5.30% 

HCISc  28.07% 29.88% 31.89% 27.70% 27.87% 

Disposable income  

)1( HCISc  71.93% 70.12% 68.11% 72.30% 72.13% 
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From column one in table (5) with no unemployment period, and 60 years old as retirement 

age, the disposable income under the traditional pension plan equals to 75.98 financial units, and 

the disposable income under the HCIS plan equals to 71.93 financial units. From column five, 

with 5.34% shift in the salary scale, the disposable income under the HCIS plan becomes 75.98 

financial units (the same level of disposable income under the traditional pension plan). 

The following graph shows the wealth accumulation curve according to Program Two 

assuming no unemployment period for both traditional and suggested HCIS plans. For the 4 

years university support program, the wealth curve starts with the age of joining high school and 

receiving education support transfers (age 18). The curve decreases until it reaches its minimum 

just before joining a paid job, at which point it increases until reaching its peak by the retirement 

age, after which the curve starts decreasing again.  The graph also shows the annual increasing 

salary scale during the work stage and the disposable income during the pre-employment, the 

work, and the retirement stage. Income increases during the work stage by 10% )10.1(
1 xx

ss 
  

and retirement benefits increases annually by 5% )05.1(
1 xx

kk 
 . 

 

 

Table (5): Results for Program Two 

Distribution of annual income at age x when the annual salary = 100 financial units 

Column's number One  Two  Three Four  Five  

Unemployment period (u) 
u = 

zero 
u = 1 u = 2 

u = 

zero 

u = 

zero 

Salary scale shift (m) 

For HCIS 

m = 

zero 

m = 

zero 

m = 

zero 

m = 

10% 

m =  

5.34% 

salary  100 100 100 110 105.34 

Traditional 

pension plan 

Tradc  24.02 24.42 24.84   

Disposable income 

)1( Tradc  75.98 75.58 75.16   

Suggested 

HCIS 

Contribution 

rate 

Cost of retirement 

transfers 
22.73 22.66 22.51 24.67 23.78 

Cost of educational 

transfers 
5.34 7.22 9.38 5.80 5.58 

HCISc  28.07 29.88 31.89 30.47 29.36 

Disposable income  

)1( HCISc  71.93 70.12 68.11 79.53 75.98 
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Figure (8): Salary scale, disposable income, and probabilistic wealth accumulation curve  

Program Two - No unemployment – 60 yrs retirement age 

 

 
 

 

Figure (9) shows the required shift (5.34%) in the salary scale which enables an individual to 

finance education expenses and keep the same level of disposable income he used to receive 

during work and retirement stages under the traditional plan.  

 

 

Figure (9): The probabilistic wealth accumulation curve and the required shift in salary scale 

Program Two - No unemployment – 60 yrs retirement age  

 
 

 

9.3 Conclusions and Recommendations 

 

Over the past few decades, local governments and donor communities have exerted serious 

efforts to find ways in which poverty can be effectively reduced; however, poverty remains an 

unresolved global issue. Our study adopts the ideas of Schultz and Becker concerning the 

importance of human capital investment as a highly efficient tool for human well being, and 

introduces a new approach concerning financing human capital investment through education. 

This approach concludes the following:  
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- Reclassification of the human life cycle to four stages, namely childhood, preem-

ployment, work, and retirement.  

- Education expenses in our plan are considered as resources for investment rather than 

consumption as they encumber the current wealth with the purpose of increasing future 

wealth. 

- Moving from the pay-as-you-go mechanism to a self-aid plan concerning financing 

human capital investment in education. 

 

Therefore, we suggest a Human-Capital Income-Security plan (HCIS) that helps an 

individual to use lifetime income earned during the work stage to achieve income security during 

different stages of their lifecycle, based on the self-aid approach.  

Testing the suggested plan using death and invalidity rates from the Social Insurance Fund in 

Egypt shows that an individual should pay 28.07% of his lifetime income during the work stage, 

and receive 50% of his starting salary during 4 years study at university, as well as receiving 

71.93% of his final salary during retirement that increases by 5% annually.  

Moreover, if this person wants to finance education expenses incurred during 3 years of high 

school in addition to the 4 years university study, he should pay 32.13% of his lifetime income 

during the work stage and receive 67.87% of his final salary as retirement benefits.   

If a person agrees to pay 28.07% of lifetime income for 4 university years support, or 32.13% 

for 7 years high school and university support, this will be more convenient (for the parent) if we 

assume that children are no longer part of financial responsibility of their parents during their 

high school and/or university period, and we suggest as they pay for their own education 

expenses according to the self-help aid plan. 

On the national scale, our HCIS plan aims at shifting at least part of the higher educational 

cost burden from government (taxpayers) to individuals, and minimizes the degree of 

dependency on parental altruism concerning human capital investment in education. It also 

enables children from poor families to pay for their education expenses during pre-employment 

stage. Thus the HCIS plan helps in breaking the poverty cycle by reducing the possibility of 

falling into poverty in the future stages of their lifecycle.  

Participating in the proposed plan is suggested to be optional and selective in a way that 

encourages free competition among students, and education service providers. This may increase 

the education system efficiency and enable students from poor families to finance their capital 

investment in education, conditional upon evidence of satisfactory progress; academic records 

and/or follow up reports. With some accurate actuarial calculations, the suggested plan proposes 

an alternative approach which we hope will to change the current way of thinking concerning 

education financing, poverty fighting and human capabilities support.  
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ABSTRACT 

 

In this paper, we derive explicit forms of the moments of order statistics arising from a 

generalized form of the two-parameter beta distribution with two shape parameters p and q as 

positive values not necessarily integers. The generalized form considered is a linear function in 

the two-parameter beta random variable X, namely, Y a bX,   where a   and b 0.  If the 

distribution of Y is denoted by beta (p, q, a, b), the moments of order statistics of some special 

cases can be easily obtained according to the values of the four parameters p, q, a and b. These 

special cases are the two-parameter beta distribution, a general form of the power distribution, 

the uniform distribution, generalized arcsine distribution, family of all arcsine distributions and 

the standard arcsine distribution. For these special cases, short tables are given for the moments 

of all order statistics in random samples of size 1,2,3,4, and 5.  

 

Keywords: Beta distribution; Arcsine distribution; Moments of order statistics. 

 

1. INTRODUCTION 

 

The computations of single and product moments of order statistics arising from the beta 

distribution have been discussed in a number of recent articles.  For example, Nadarajah (2008) 

has derived explicit closed form expressions for moments of order statistics from the normal, log 

normal, gamma and beta distributions. The expressions take the form of finite sums of well 

known special functions namely, the Lauricella function of type A and the generalized Kampe de 

Feriet function. Thomas and Samuel (2008) have obtained certain recurrence relations for the 

single and product moments of order statistics of a random sample of size n arising from a beta 

distribution when the two shape parameters are positive integers. Abdelkader (2008) has 

discussed the case of moments of order statistics of independent non-identically beta random 

variables. The independent identical case has been also considered in the same paper if the two 

shape parameters are positive integers.  

mailto:kselim9@yahoo.com
mailto:wyounan@aucegypt.edu
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In this article, we derive explicit forms for all single moments of order statistics arising from a 

generalized form of the two-parameter beta distribution with two shape parameters p and q as 

positive values not necessarily integers. The generalized form considered is a linear function in 

the two-parameter beta random variable X, namely, Y a bX,   where a   and b 0.  If the 

distribution of Y is denoted by Beta  p,q,a,b , the moments of order statistics of some special 

cases can be directly obtained. These special cases are: (1) The two-parameter beta distribution 

Beta  p,q,0,1 , (2) A general form of the power distribution Beta  p,1,a,b ,  (3) The uniform 

distribution Beta  1,1,a,b a ,  (4) Generalized arcsine distribution Beta  p,1 p,0,1  as indicated 

by Feller (1971), (5) Family of all arcsine distributions Beta  0.5,0.5,a,b as defined by 

Balakrishnan and Nevzorov (2003) and (6) The standard arcsine distribution Beta  0.5,0.5,0,1 as 

given in Balakrishnan and Nevzorov (2003) too. 

The linear transformation with the two additional parameters a and b enhances the role of 

order statistics in fitting models in many real life applications. The computed moments of order 

statistics are crucial in robustness properties of modeling and inferential procedures 

The paper is outlined in the following two sections: Section 2 derives an explicit expression 

for the k th  moment of the r th  order statistic k

r: n  when 1 2 nY ,Y ,...,Y is a random sample of size n 

from a generalized beta distribution Y a bX,  where a   and b 0  and X is a two-

parameter beta random variable. Section 3 gives short tables for the computed first and second 

moments of order statistics for the random variable Y and for the six special cases at chosen 

values of the four parameters p, q, a and b.   

 

2. MOMENTS OF ORDER STATISTICS OF A GENERALIZED BETA DISTRIBUTION 
 

Let X be a random variable having a two-parameter beta distribution 
 

                        p 1 q 11
f (x) x (1 x) , 0 x 1,

(p,q)

    


                                  (1) 

 

where p and q are positive values not necessarily integers. And let 

 

                                       Y a bX,           a y a b,                                          (2) 
 

where a   and b 0.  If (1) (2) (n)Y Y ... Y   are the order statistics of a random sample of n 

observations from the distribution of the random variable Y, then the  k th  moment of the  r th

order statistic denoted by k

r:n - is given by the following proposition. 

 

Proposition 

 

Let (1) (2) (n)Y Y ... Y   be the sample order statistics from the distribution of the random variable 

descried in (2), then the k
th

 moment of the r
th

 order statistic Y(r) is given by 
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t mn r k

k

r:n i

t 0 m 0 i 0

n r k(p q) a
C c k m i p(t r),q ,

t m(p) b
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and 

                                              
j

j

( 1)
a

(q j) (p j) j!



    

.                                                   (7) 

A detailed sketch for the proof of the above assertion is given in the Appendix. If a 0  and b 1  

in (3), we get the k th  moment of the r th order statistic of the beta distribution as follows 

 

          
r t

n r
k

r:n i

t 0 i 0

n n rr (p q) (p q)
c k i p(t r),q ,

r t(q) (p) (p)

 

 

         
                   

                     (8) 

 

where 0 i jc ,c and a are as defined in (5) – (7). 

It is worthy to mention that the moment given in (8) is a different form of the same moment 

obtained by Nadarajah (2008) through an alternative approach. However, in his article, no 

computations have been indicated. 

 

3. COMPUTATIONS OF SOME MOMENTS OF ORDER STATISTICS 

 

In this section, we use the explicit expressions given in equations (3) – (7) to compute the first 

and second single moments of order statistics for the random variable Y and the special cases at 

the chosen values of the four parameters p, q, a and b. Table 1 summarizes the different special 

cases that could be derived from the general form. The last two columns of the table describe the 

selected specific instances of the indicated distributions considered for computation and the table 

numbers of the corresponding moments that follow. The special case of the two-parameter beta 

distribution is considered two times (Tables 3 and 4). In Table 3, the parameters p and q are 

assumed to be positive values, while they are restricted to positive integers in Table 4. 
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An Intel core 2 duo processor (2.4 GH) and Fortran 90 compiler are used for computations. 

The main difficulty in programming the proposed form for moments is due to the computation of 

the gamma function for values higher than 25. For this purpose, a module described in Zhang 

and Jin (1996) is adopted. The infinite series are computationally converged to a tolerance level 

less than 0.00001 in a reasonable number of steps (less than 25 terms in most of the cases). 

For general checks on computations of the moments, the following known relations are 

applied  





n

1r

n:r n   and 


n

1r

2

n:r )X(E n )X(E 2  

where  is the mean of the parent distribution (David, 1981, pp. 38). In other words, for any 

given sample size n, the average of first moments of all order statistics must equal to the first 

moment of the parent distribution, that is, the moment at n = 1 and r = 1. A similar check has 

been made for the second moments. 

 

Table 1: Generalized and Special Cases Considered, and the Instance of Computations for Each
*
 

Distribution 
Restrictions to Parameters Instance of 

Computation 

Table 

Number p q a b 

A Generalized Beta p ε R
+
 q ε R

+
 a ε R b ε R

+
 (2.5, 1.5, 2, 3) 2 

Two-Parameter Beta p ε R
+
 q ε R

+
 a = 0 b = 1 (2.5, 1.5, 0, 1) 3 

Two-Parameter Beta p ε N q ε N a = 0 b = 1 (3, 2, 0, 1) 4 

A General Form of Power  p ε R
+
 q = 1 a ε R b ε R

+
 (2.5, 1, 0, 1) 5 

Uniform p = 1 q = 1 a ε R b > a (1, 1, 0, 1) 6 

Generalized Arcsine 0 < p < 1 q = 1- p a ε R b ε R
+
 (0.25, 0.75, 0, 1) 7 

Family of Arcsine p =0.5 q = 0.5 a ε R b ε R
+
 (0.5, 0.5, 2, 3) 8 

Standard Arcsine p = 0.5 q = 0.5 a = 0 b = 1 (0.5, 0.5, 0, 1) 9 

* R is the set of all real values, R
+
 is the set of positive values and N is the set of positive integers. 

 

Table 2: Moments of Order Statistics of a Generalized Beta Distribution 

Beta (2.5,1.5,2,3)  

  r 

n 
First moment Second moment 

1 2 3 4 5 1 2 3 4 5 

1 3.8750     15.4375     

2 3.5039 4.2461    12.6174 18.2576    

3 3.3022 3.9073 4.4155   11.1815 15.4891 19.6418   

4 3.1701 3.6983 4.1163 4.5153  10.2832 13.8765 17.1018 20.4885  

5 3.0747 3.5516 3.9184 4.2482 4.5820 9.6561 12.7914 15.5041 18.1669 21.0689 
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Table 3: Moments of Order Statistics of a Two-Parameter Beta Distribution 

Beta (2.5,1.5,0,1)  (The Two Parameters are not Positive Integers) 

  r 

n 
First moment Second moment 

1 2 3 4 5 1 2 3 4 5 

1 0.6250     0.4375     

2 0.5013 0.7487    0.2891 0.5859    

3 0.4341 0.6358 0.8052   0.2192 0.4289 0.6644   

4 0.3900 0.5661 0.7054 0.8384  0.1781 0.3426 0.5152 0.7142  

5 0.3582 0.5172 0.6395 0.7494 0.8607 0.1508 0.2872 0.4256 0.5749 0.7490 

 

Table 4: Moments of Order Statistics of a Two-Parameter Beta Distribution 

Beta (3,2,0,1) (The Two Parameters are Positive Integers) 

  r 

n 
First moment Second moment 

1 2 3 4 5 1 2 3 4 5 

1 0.6000     0.4000     

2 0.4857 0.7143    0.2667 0.5333    

3 0.4250 0.6072 0.7678   0.2054 0.3892 0.6054   

4 0.3855 0.5434 0.6709 0.8001  0.1695 0.3131 0.4653 0.6521  

5 0.3570 0.4993 0.6096 0.7118 0.8222 0.1456 0.2650 0.3853 0.5186 0.6855 

 

Table 5: Moments of Order Statistics of the Power Distribution 

Beta (2.5,1,0,1)  

  r 

n 
First moment Second moment 

1 2 3 4 5 1 2 3 4 5 

1 0.7143     0.5556     

2 0.5952 0.8333    0.3968 0.7143    

3 0.5252 0.7353 0.8824   0.3133 0.5639 0.7895   

4 0.4775 0.6684 0.8021 0.9091  0.2611 0.4699 0.6579 0.8333  

5 0.4421 0.6189 0.7427 0.8418 0.9259 0.2251 0.4051 0.5672 0.7184 0.8621 

 

 

Table 6: Moments of Order Statistics of the Uniform Distribution. Beta (1,1,0,1)  

  r 

n 
First moment Second moment 

1 2 3 4 5 1 2 3 4 5 

1 0.5000     0.3333     

2 0.3333 0.6667    0.1667 0.5000    

3 0.2500 0.5000 0.7500   0.1000 0.3000 0.6000   

4 0.2000 0.4000 0.6000 0.8000  0.0667 0.2000 0.4000 0.6667  

5 0.1667 0.3333 0.5000 0.6667 0.8333 0.0476 0.1429 0.2857 0.4762 0.7143 
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Table 7: Moments of Order Statistics of Generalized Arcsine Distribution. Beta (0.25,0.75,0,1)  

  r 

n 
First moment Second moment 

1 2 3 4 5 1 2 3 4 5 

1 0.2500     0.1563     

2 0.0910 0.4090    0.0371 0.2754    

3 0.0406 0.1918 0.5176   0.0111 0.0890 0.3687   

4 0.0208 0.1001 0.2835 0.5956  0.0039 0.0325 0.1454 0.4431  

5 0.0117 0.0571 0.1646 0.3628 0.6538 0.0016 0.0134 0.0613 0.2015 0.5035 

 

 

Table 8: Moments of Order Statistics of Family of All Arcsine Distributions. Beta (0.5,0.5,2,3)  

  r 

n 
First moment Second moment 

1 2 3 4 5 1 2 3 4 5 

1 3.5000     13.3750     

2 2.9152 4.0848    9.2810 17.4690    

3 2.5894 3.5669 4.3437   7.1718 13.4995 19.4538   

4 2.4150 3.1128 4.0210 4.4513  6.1217 10.3220 16.6769 20.3794  

5 2.3082 2.8422 3.5187 4.3559 4.4751 5.5154 8.5467 12.9851 19.1380 20.6898 

 

Table 9: Moments of Order Statistics of the Standard Arcsine Distribution. Beta (0.5,0.5,0,1)  

  r 

n 
First moment Second moment 

1 2 3 4 5 1 2 3 4 5 

1 0.5000     0.3750     

2 0.3051 0.6949    0.1800 0.5700    

3 0.1965 0.5223 0.7812   0.0905 0.3591 0.6754   

4 0.1383 0.3709 0.6737 0.8171  0.0513 0.2079 0.5103 0.7305  

5 0.1027 0.2807 0.5062 0.7853 0.8250 0.0314 0.1309 0.3234 0.6349 0.7544 

 

 
APPENDIX 

 
Proof of the proposition  

 

If (y) and ( )y are the density function and the distribution function respectively of the random 

variable Y, then 

                    
q 1p 1

1 y a y a
(y) 1 , a y a b,

b (p,q) b b


     

              
     

and 

                                    
y a

(y) F , a y a b,
b
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where the function F is the distribution function of the random variable X expressed in the 

following form (Andrews, 1985, pp. 70) 

                       
i i

p

i 0

1 ( 1) x
F(x) x (q) , 0 x 1.

(p,q) (q i) (p i) i!






   
     

           

 

The k th  moment of the r th order statistic rY  could be then written as 
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where ia  is as given by  (7) with subscript i in place of  j.  The substitution ry a
u

b


 yields to  
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                     (A-1) 

 

According to Gradshteyn and Ryzhik (1980, pp. 14), we can write    
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                                            (A-3) 

 

Expanding k(bu a) in (A-1), substituting from (A-2) and (A-3) for the term 
t r 1

i

i

i 0

a u

 




 
 
 
  into (A-1) 

and following some algebraic manipulation we finally get the moments k

r as given in (3). 
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ABSTRACT

Local D-optimal experimental designs for precise parameter estimation are designs which
minimize the determinant of the variance-covariance matrix of the parameter estimates based
on local sensitivity coefficients. For nonlinear models, this determinant may not give a true
indication of the volume of the joint inference region for the parameters because of the
underlying nonlinearity of the estimation problem. In this article, we investigate sequen-
tial D-optimal experimental designs using profile-based sensitivity coefficients developed by
Sulieman et.al. (2001, 2004). Profile-based sensitivity coefficients account for both parame-
ter estimate correlations and model nonlinearity and are, therefore, expected to yield better
precision of parameter estimates when used in D-optimal design criteria. Some characteristics
of the profile-based designs and related computational aspects are discussed. Applications
of the new designs to linear and nonlinear model cases are also presented.

Keywords: Sequential D-optimal design, Local sensitivity coefficient, parameter estimation,
profile-based sensitivity coefficient.

1. INTRODUCTION

Mathematical modeling, simulation and optimization are nowadays essential tools in under-
standing, explaining and exploiting the behavior of complex systems. There are two methods
for acquiring information about the models representing these systems and their parameters:
parameter identifiability and parameter sensitivity. This article focuses on parameter sen-
sitivity which in general describes the impact of perturbations in the values of model input
parameters on the model outputs. Sensitivity results are used to improve the quality of the
model perhaps by reducing complexity or by guiding further experiments to reduce uncer-
tainty or discriminate among rival models. Several design of experiment techniques have been
developed in the literature and applied successfully to wide range of systems (Franceschini
and Macchietto, 2008). The objectives of these techniques typically focus on model precision
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or/and model discrimination. The most popular design criterion is the D-optimality which
minimizes the determinant of the variance-covariance matrix of the parameter estimates.
For linear models, the optimum design does not depend, at least in general, on the values
of the model parameters and it is possible to arrive at a common criterion. For nonlinear
models, however, the optimum experimental designs depend on the values of the unknown
parameters and the problem of their construction is necessarily more complicated than that
for linear models.

The primary goal of this article is to employ two different sensitivity measures in the
construction of D-optimal designs and compare the results. The first measure is the conven-
tional local sensitivity measure defined by the first-order partial derivatives of the regression
model response function with respect to the parameters. To date, D-optimal designs are
defined in terms of these local measures. In sensitivity assessment, the local sensitivity co-
efficients measure the marginal impact of the parameters on the model predictions due to
their inability to incorporate simultaneous changes in parameter values. To surmount the
drawbacks of the local sensitivity assessment, Sulieman et al. (2001, 2004) proposed an alter-
native assessment procedure in which simultaneous perturbations in the values of all model
parameters are achieved using the profiling scheme introduced by Bates and Watts (1988) for
nonlinearity assessment of regression models. The profile-based sensitivity measure; defined
by the total derivative of the model function with respect to parameter of interest, was shown
to account for both nonlinearity within the parameter estimation problem and parameter
estimate co-dependencies. Like any derivative measure, profile-based sensitivity is inherently
local, it provides, however, a more comprehensive picture of the prediction sensitivity in the
presence of parameter co-dependencies and model nonlinearity. Sulieman et al. (2009) called
profile-based sensitivity coefficients hybrid local-global sensitivity measure.

The present work provides preliminary results in the construction of D-optimal designs
using profile-based sensitivity measures. The designs are constructed sequentially (Myers
et al., 1989) where only one additional experiment is generated for an existing design. The
new design is evaluated through re-estimation of model parameter values and assessment of
their accuracy. In section 2 we present profile-based sensitivity procedure using the notion of
model re-parameterization in single-response nonlinear regression models. In particular, we
adopt predicted value re-parameterization in which the expression for the predicted response
at a selected design point is defined as one of the parameters in the new system. Such a
re-parameterization allows the profiling-based sensitivity measure to be calculated automat-
ically with the calculations of the profile vector when fitting the newly formulated model. In
Section 3 we develop the profile-based D-optimal designs for linear and nonlinear regression
models and discuss their properties. Illustrative model cases are presented in Section 4, and
conclusions are summarized in Section 5.
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2. PROFILE-BASED SENSITIVITY ANALYSIS

Consider the general mathematical form of a single response nonlinear regression model

y = f(X,Θ) + ϵ (1)

where y is an n-element vector of observed values of the response variable for particular
values of the regressor variables X = {x1,x2, . . . ,xn}, Θ is a p-element vector of unknown
parameters, f is an n-element vector of predicted values of the response variable for given X
and Θ, f(X,Θ) = {f(x1,Θ), f(x2,Θ), . . .
f(xn,Θ)}, and ϵ is an n-element vector of independent random errors with a specified joint
distribution. In most cases, including the case here, ϵ is assumed to have a spherical normal
distribution, with E(ϵ) = 0 and var(ϵ) = E(ϵϵ′) = σ2I.

Sulieman et al. (2001) developed a profile-based sensitivity measure to assess the sensitiv-
ity of the predicted responses from model (1). The motivation for the profile-based approach
arises from the profiling algorithm developed by Bates and Watts (1988) for constructing
likelihood intervals for individual parameters in single response nonlinear regression models.
The profiling algorithm was implemented to a reformulated model function using special
re-parameterization in which the predicted response is one of the parameters in the new
formulation, namely:

ϕ1 = η0(Θ) = f(Θ,x = x0)
ϕ2 = θ2

...
ϕp = θp

(2)

where η0(Θ) = f(Θ,x = x0) is the predicted response at a selected prediction point x0.
The re-parameterization in equation (2) is called the predicted response parametrization. It
is not necessary that only ϕ1 is used to define the predicted response at x0, nor that only
θ1 is used as its inverse ϕ−1

1 . Any other two parameters from Φ and Θ parameters can be
chosen for these purposes. For reader’s convenience, however, we will denote the predicted
response parameter by ϕ1 throughout the paper, whereas the inverse transformation ϕ−1

1 will
be defined by one of the least nonlinear behaving parameters in η(Θ).

Bates and Watts (1981) showed that when the regression model has only one nonlinear
parameter, the transformation (2) will reduce parameter nonlinearity to zero for all Θ. Clarke
(1987) referred to this class of transformation as “optimal parameter” transformations since
it produces zero or small parameter nonlinearities in the model and minimum estimation
bias. However, as shown by Clarke (1987), the effectiveness of such re-parameterizations
depends substantially on the choice of the points x0 at which the predicted responses are to
be estimated. In using this class of transformations, our purpose is not to reduce either the
parameter nonlinearities in the model but rather to characterize the parameter sensitivities
of the predicted response at a predetermined point x0. Therefore, the re-parameterization
defined in (2) is more functional here since it defines the identity transformation for (p− 1)
parameters, so that neither the nonlinearities of these parameters nor the biases in their
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estimates are changed by the transformation. The only parameter for which the nonlinearity
or the bias may change is the one defined by the inverse transformation ϕ−1

1 , say θ1, where
θ1 is chosen to be one of the most linearly behaving parameters in the model.

Let ηnew(Φ) be the new formulation of the model function in terms of Φ and suppose
that ϕi is the parameter of interest. In profiling algorithm, the vector of parameters Φ is
partitioned as Φ = (ϕi,Φ−i) which is, in terms of Θ, equivalent to Θ = (θi,Θ−i). ϕi = θi
is then varied across its range of uncertainty and for each value of ϕi, let Φ̃−i(ϕi) be the
conditional least squares estimates of Φ−i. The joint behavior of the predicted response
parameter and each of the remaining parameters in ηnew can be understood through the
profile traces, and so sensitivity information can be extracted from the profile trace plots.
Using the studentized parameters, the profile trace of the predicted response parameter ϕ1

versus ϕi, i = 2, 3, . . . , p, is the curve consisting of the points (δ(ϕi), δ̃(ϕ1)), where δ̃(ϕ1) is
the studentized conditional estimate of ϕ1 given a fixed value of ϕi, i.e,

δ̃(ϕ1) =
ϕ̃1 − ϕ̂1

se(ϕ̂1)
(3)

and

δ(ϕi) =
ϕi − ϕ̂i

se(ϕ̂i)
(4)

where the parameter estimates ϕ̂1 and ϕ̂i and their associated standard errors se(ϕ̂1) & se(ϕ̂i)
are obtained from the unconditional least squares fitting of ηnew to the data.

Sulieman et al. (2001) defined the Profile-based Sensitivity Coefficient (PSC) as the slope
of δ̃(ϕ1) with respect to δ(ϕi). At a given design point x0 PSC is derived as follows:

PSCi(x0) =
∂δ̃(ϕ1)

∂δ(ϕi)
=
se(ϕ̂i)

se(ϕ̂1)

∂(ϕ̃1)

∂(ϕi)
(5)

Expressing equation (5) in terms of Θ parameters yields:

PSCi(x0) =
se(θ̂i)

se(η̂0)

∂(η̃0(Θ))

∂(θi)
=
se(θ̂i)

se(η̂0)

Dη0(θi, Θ̃−i)

Dθi
(6)

where the operator Dη0(θi, Θ̃−i) denotes the total derivative of η0(θi, Θ̃−i) with respect to θi,
(Sulieman et al., 2001). Expressing the total derivative in terms of partial derivatives gives
the following result:

Dη0(θi,Θ−i(θi))

Dθi
=
∂η0
∂θi

+
∂η0
∂Θ−i

∣∣∣
Θ̃−i

∂Θ̃−i

∂θi
(7)

Using least squares estimation criterion, Sulieman et al. (2001) showed that the term ∂Θ̃−i

∂θi
is given by:

∂Θ̃−i

∂θi
= −

{
(
∂2S(θi,Θ−i(θi))

∂Θ−i∂Θ′
−i

)−1∂
2S(θi,Θ−i(θi))

∂θi∂Θ−i

}∣∣∣
Θ̃−i

(8)
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where S(θi,Θ−i(θi)) =
∑n

i=1(yi − ηi(θi,Θ−i(θi)))
2 is the conditional least squares function.

Substituting equations (7)and (8) into equation (6)yields:

PSCi(x0) =
se(θ̂i)

se(η̂0)

{
∂η0
∂θi

− ∂η0
∂Θ−i

(
∂2S

∂Θ−i∂Θ′
−i

)−1 ∂2S

∂θi∂Θ−i

∣∣∣
Θ̃−i

}
(9)

Using first and second order derivative information of the model function η(Θ), equation (9)
can be shown to equal:

PSCi(x0) =
se(θ̂i)

se(η̂0)

{
v0i − v′

0−i
(V ′

−iV−i − [e′][V−i−i])
−1(V ′

−ivi −D′··e)
}

(10)

where v0i is the i-th component of the first derivative vector v0 evaluated at x0; V−i is an
n× (p− 1) matrix consisting of first derivative vectors of η(Θ) with respect to Θ−i; v0−i

is a
(p− 1) dimensional vector consisting of the elements in the row of V−i which corresponds to
x0; V−i−i is the n× (p− 1)× (p− 1) array of the second derivatives of η(Θ) with respect to
Θ−i; D·· is the n× (p− 1) matrix of the second derivatives of η(Θ) with respect to Θ−i and
θi, and e is the n-element residuals vector. The quantities in equation (10) are evaluated at
(θ̂i, Θ̃−i(θ̂i)).

The first term in equation (10), v0i gives a measure of the conventional Marginal Sen-
sitivity Coefficient, MSC, (Sulieman et al., 2001). The second term in the equation,{
v′
0−i

(V ′
−iV−i − [e′][V−i−i])

−1(V ′
−ivi −D′··e)

}
, represents an adjustment term containing two

components of information. The first is the marginal effects of Θ−i on the predicted response
at x0 through the derivative vector v0−i

. The second component of the information relates
to the co-dependency structure of the parameters Θ. It includes two sets of co-dependencies:
the pairwise correlations among the elements of Θ̃−i via the term (V ′

−iV−i− [e′][V−i−i])
−1 and

correlations between θ̂i and Θ̃−i via the term (V ′
−ivi −D′··e). All terms in equation (10)are

scaled by the factor
se(θ̂i)

se(η̂0)
. Because second-order derivatives of η(Θ) are included in the

co-dependency terms, model nonlinearity is accounted for by the profile-based sensitivity
coefficient up to second-order derivatives.

The adjustment term in equation (10) incorporates the simultaneous changes in the
parameter values making PSCi(x0) global sensitivity measure while it is inherently local
since it is derivative-based. It is only when the parameter co-dependency structure and
model nonlinearity are insignificant that PSCi(x0) becomes equivalent measure to local
sensitivity coefficient. PSCi(x0) is called hybrid local-global sensitivity measure (Sulieman
et al., 2009).

For a linear model, y = η(β) + ϵ, it can be shown that the profile-based sensitivity
coefficient for the predicted response at x = x0, η0(β), to the i-th parameter βi evaluated at
the least squares parameter estimates, reduces to

PSCi(x0) =
se(β̂i)

se(η̂0)
{x0i − x0−i

(X′
−iX−i)

−1X′
−ixi} (11)
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where X−i is the n×(p−1) matrix of regressor variables formed by removing the i-th column
xi of the original matrix X of regressor variables, and x0−i

is the row of X−i corresponding
to x = x0.

The first term in equation (11) gives the scaled marginal sensitivity coefficient,

MSCi(x0) =
se(β̂i)

se(η̂0)
x0i .

The adjustment term in the second term is proportional to the portion of xi that is explained
by the variables in X−i obtained from linearly regressing xi on X−i. This implies that PSC
in the linear model measures the influence of βi on the predicted response at x0 after the
effects of the remaining parameters on βi have been removed. In contrast, MSC gives the
effect of βi on the predicted response with the remaining parameters fixed at their conditional
least squares values.

For a linear model, the profile-based sensitivity coefficients are independent of the values
of the parameter estimates; they depend only on the matrix X. For orthogonal matrix X,
the profile-based and marginal sensitivity assessments are equivalent.

3. PROFILE-BASED D-OPTIMAL DESIGN

D-optimal designs are most commonly used of the alphabet designs (Ryan, 2007; Myers et al.,
1989). A D-optimal design minimizes the volume of the parameter joint conference region or
equivalently maximizing the determinant of the Fisher Information matrix. Box and Lucas
(1959) gave the first formulation of the D-optimal design for nonlinear models. They defined
the D-optimality objective function, using the unscaled local sensitivity coefficients, as:

D = |V ′
0V0| (12)

where the matrix of local sensitivity coefficients V0 is evaluated at an initial parameter
estimates Θ0. By maximizing D, the volume of the linear approximation to the exact con-
fidence region of Θ is minimized at Θ0. When model nonlinearity is pronounced, the local
D-optimality can produce designs with poor performance and little information about pa-
rameters. Hamilton and Watts (1985) introduced quadratic designs based on second-order
approximation to the inference region of Θ. Quadratic designs have the distinct advantage
of taking into account the nonlinearity of response function.

The D-optimal designs are often constructed by sequential experimental strategies (My-
ers et al., 1989). Sequential designs are appealing because they offer the chance to change
strategy after the first round of experiment has been completed and new information is avail-
able. The unscaled marginal sensitivity coefficients for the prior experiments are included in
the V0 matrix along with the new row corresponding to the new experimental conditions to
be selected. In sequential designs, the V0 is constructed as follows:

V0 =

[
V0old
V0new

]
(13)
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where V0old is the unscaled marginal sensitivity matrix for the pre-existing experimental set-
tings and V0new contains rows of sensitivity coefficients corresponding to the new experimental
settings being selected. Many strategies have been developed for generation of D-optimal
designs by sequentially adding runs to an existing design (Franceschini et al., 2008).

In what follows, the unscaled profile-based sensitivity coefficients developed in the previ-
ous section are utilized in a sequential D-optimal design strategy. Let Pi denote the vector of
the unscaled profile-based sensitivity coefficients corresponding to the parameter θi and eval-
uated at all prediction points of interest. If a pre-existing design consisting of n prediction
points is available, Pi is an n× 1 vector. From equation (10), Pi is expressed as:

Pi = vi −V−i(V
′
−iV−i − [e′][V−i−i])

−1(V′
−ivi −D′··e) (14)

The corresponding D-optimality criterion is:

DP = |P ′
0P0| (15)

where the matrix P = [P1P2 . . .Pp] is evaluated at Θ0, i.e., each element Pi is evaluated
at Θ0 . In sequential design approach, Θ0 is often taken as the least squares estimate of Θ
from the current design.
For linear models, the Pi is independent of Θ and given by:

Pi = xi −X−i(X
′
−iX−i)

−1X′
−ixi (16)

which can be expressed as:
Pi = Lxi (17)

where L is a linear transformation matrix given by:

L = In −X−i(X
′
−iX−i)

−1X′
−i (18)

where In is the n-dimensional identity matrix. A glance at the matrix L reveals that in the
linear model the profile-based sensitivity coefficient for βi is a projection of the column xi

onto the column space orthogonal to X−i. In other words, Pi is the residuals from regressing
xi on X−i. In parameter sensitivity terms, Pi measures the influence that βi exerts on the
predicted response after the removal of its co-dependencies with the remaining parameters.
The corresponding D-optimality criterion is independent of β parameters and is given by:

DP = |X′L′LX| (19)

which reduces to:
DP = |X′LX| = |L||X′X| ≈ |X′X| (20)

because L is symmetric (L′ = L) and idempotent (L2 = L) and |L| is constant.

Equation (20) implies that the design settings that maximize DP are equal to the set-
tings maximizing D in equation (12). This result stems from the invariance property of
D-optimal designs to linear transformations of the design space that are independent of
model parameters.
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4. ILLUSTRATIVE EXAMPLES

In the following two examples, we use sequential design strategy to generate one additional
design point usingD andDP optimality criteria given in equations (12) and (15), respectively.
For each criterion the corresponding design matrix is an (n + 1) × p consisting of the pre-
existing design of size n and an additional row of sensitivity coefficients evaluated at the new
design point to be generated. The optimization algorithm is implemented on MATLAB 7.6
using appropriate minimization solver where both D−1 and D−1

P are minimized leading to
the same optimum D and DP , respectively, are maximized.

Example 4.1: Linear Model Case
Consider the following first-order plus two-factor interaction linear model:

f(x,β) = β0 + β1x1 + β2x2 + β12x1x2 (21)

A data set on tire wear (response), temperature (x1) and contact pressure (x2) is used in
Seber and Lee (2003) to fit the model. The data set is reported in Table 1. A 12th design

Table 1: Linear regression model data reported in Seber and Lee (2003), Example 4.1.

Observation no. Temperature (F ◦) Pressure (psi) Wear
1 500 15 0.1014
2 500 21 0.5009
3 1000 15 0.8152
4 1000 21 0.4026
5 750 13.5 0.7001
6 750 22.5 0.1995
7 375 18 0.5753
8 1125 18 0.8747
9 750 18 0.4893
10 750 18 0.5031
11 750 18 0.5118

point is generated by D−1 and D−1
P optimality criteria. We begin by evaluating both criteria

at the original design points and at sequential design points at the corners of the region. The
corner point (x1 = 500, x2 = 15) is the design setting at which the optimum value of both
criteria occur. This result is not a surprise. As discussed in Section 3, for linear models, the
structure of the DP optimality can be viewed as a linear transformation of the design matrix
X and therefore, both D and DP yield the same optimal value because of the invariance
property of the D- optimality criterion.
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Example 4.2: Michaelis-Menten Model
Michaelis-Menten model is commonly used in enzymatic kinetics with well-known formula-
tion:

f(x,Θ) =
θ1x

θ2 + x
(22)

where y is the measured initial velocity of an enzymatic reaction and x is the substrate
concentration. The unknown parameters θ1 and θ2 represent maximum conversion rate and
Michaelis-Menten constant, respectively. The data set used by Bates and Watts (1988) for
fitting model (22) is used here. As shown in Table 2 below, the data set contains 6 different
design settings, each with one replicate.
The given design is used to estimate model parameters. The results are given in Table 3:

Table 2: Michaelis-Menten equation data reported in Bates and Watts (1988), Example 4.2.

Observation no. Substrate Velocity
Concentration (ppm) (counts/min2)

1 0.02 76
2 47
3 0.06 97
4 107
5 0.11 123
6 139
7 0.22 159
8 152
9 0.56 191
10 201
11 1.10 207
12 200

Table 3: Summary of parameter estimates for the Michaelis-Menten model

Parameter Estimate St.error

θ1 212.68 6.94 corr(θ̂1, θ̂2) = 0.77, s2 = 119.5
θ2 0.06411 0.008 with 10 degrees of freedom

The 13th concentration point is generated using MATLAB 7.6 minimization routine for
restricted x in the domain 0 < x ≤ xmax = 1.1. The optimal value for the additional
concentration point is x = 0.0747 when D−1 is minimized and x = 0.05116 when D−1

P is
minimized. In an attempt to evaluate the information content of the new design, formed by
adding the optimal value of x to the existing design in Table 2, the parameters θ1 and θ2 are
re-estimated using the 13 experimental runs in the combined design. The response variable
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Figure 1: Standard errors of the re-estimated Michaelis-Menten model parameters θ1 and θ2
using additional D optimal design point. The solid and dotted lines join the values of se(θ̂i)
resulting from the optimal D and DP designs, respectively. The dashed line gives se(θ̂i)
resulting from the original design

for the 13th concentration point is simulated by using the fitted model in Table 3 and adding
normally distributed random noise with variance equal to s2 = 119.5 given in Table 3. For
each of the 500 simulations that were carried out, the accuracy of the resulting parameter
estimates expressed by their standard errors is assessed. The results are shown in the plots
in Figure 1.

Despite the gain in degrees of freedom when the combined design is used, for a number of
simulations, the standard errors of the two parameter estimates using the combined design
exceed the corresponding ones using the existing design (dashed line). This behavior is
seen more occuring in θ̂1 than in θ̂2 implying that the D and DP optimal concentration
points provide more information for estimating θ2 than for estimating θ1. For the majority
of simulations, the dotted line representing se(θ̂i) using DP design is lower than the solid
line representing se(θ̂i) using D design for both parameter estimates. This is to say that
the reduction in standard errors associated with DP design where x = 0.05116 is more
substantial than that associated with D design where x = 0.0747. The former design point
yielded more significant improvement in the estimates of the two parameters than the latter
design point.

Table 4 reports the average se(θ̂i) over the 500 simulations for both optimal design
points. It is obvious from the table that the relative improvement in the precision of θ̂1 and
θ̂2 is greater for DP -optimal than for D-optimal design. The relative reduction in se(θ̂i) is
greater for θ̂2 than for θ̂1 in both designs implying the information gained by the additional
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Table 4: Average se(θ̂i) over the 500 simulations

Design se(θ̂1) se(θ̂2)
D-optimal (x = 0.0747) 6.82 0.0077
DP -optimal x = 0.05116 6.74 0.0072

Existing 6.94 0.008

concentration point is mostly utilized in estimating θ2. It should be noted that θ2 in model
(22) represents the half-concentration, i.e. the value of x such that when the concentration
reaches that value the velocity y is one-half its ultimate value. From the observed velocity
seen in Table 2, one-half of maximum y, ymax/2, is reached at a concentration of about
0.06 and so adding additional experimental run around this concentration provides most
information about θ2 estimate.

5. CONCLUSIONS

Whereas local D-optimal designs take account of neither the co-dependency structure among
model parameters nor the model nonlinearity, the profile-based D-optimal designs take both
characteristics into account. In turn, using profile-based D-optimal criterion in sequential
design strategy provides more informative data for use in parameter estimation. For linear
models, both local and profile-based optimal design criteria give same experimental data due
to the invariance property of D-optimality criterion in general.
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ABSTRACT

In this paper, we derive explicit forms for the moments of the generalized order statistics
(GOS) from the power function and log-logistics distributions. Then, we deduce the moments
of the ordinary order statistics (OOS) and record values (RV) as special cases. Also, we use
these moments to develop the best linear unbiased estimate (BLUE) of the scale parameter.
In addition, we compare the BLUE with the corresponding maximum likelihood estimate.
Finally, we show the usefulness and performance of the BLUE and MLEs through Monte
Carlo Simulations.

1. INTRODUCTION

Generalized order statistics (GOS) have been introduced and extensively studied in Kamps
(1995a,b) as a unified theoretical set-up which contains a variety of models of ordered random
variables with different interpretations. Examples of such models are: (i) The ordinary order
statistics (OOS), (ii) Record values (RV), (iii) The k-th record values (k-RV), (iv) Progressive
Type-II censored order statistics (POS) and Sequential order statistics (SOS).

These models can be effectively applied in different aspects in real life problems. Or-
dinary order statistics (OOS), k-records [record values (RV) when k = 1], sequential order
statistics, ordering via truncated distributions and censoring schemes can be discussed as
they are special cases of the GOS. Kamps’s book (1995a) gave several applications in a
variety of disciplines, recurrence relations of the moments of GOS and characterizations,
(for a survey of the models contained and of the results obtained in the GOS, see Kamps
1995a, b, 1999). Ahsanullah (1996, 1997, 2000) has discussed the GOS from the uniform and
exponential distributions, Keseling (1999) has characterized some continuous distributions
based on conditional expectations of GOS. Ahsanullah (2000) has characterized the expo-
nential distribution based on independence of functions of GOS, Ahmed and Fawzy (2003)
have characterized some of the doubly truncated distributions based on the concept of the
generalized order statistics. Some specific distributions have been characterized by using the
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relationships of the expected values of record values see Ahsanullah (1982, 1990, 1991), Bal-
akrishnan and Ahsanullah (1994), Gupta (1984), Lin (1987) and Nagaraja (1977), Ahsanullah
and Kirmani (1991) have characterized the exponential distribution through lower records
while Abu-Youssef (2003) has characterized general classes of distributions through record
values. AL-Hussaini and Ahmad (2003a,b) have constructed Bayesian interval prediction of
the generalized order statistics and record values, respectively. AL-Hussaini, Ahmad and
El Kashif (2005) have established some new recurrence relations for the moment generating
function of the generalized order statistics. Sultan and El-Mougod (2005) have characterized
general classes of doubly truncated absolutely continuous distributions by considering the
conditional expectation of functions of record values.

Let X1,n,m̄,k, X2,n,m̄,k, . . . , Xn,n,m̄,k represent n GOS from a continuous population whose
pdf and cdf are f(x) and F(x), where k ≥ 1 and m̄ = (m1,m2, . . . ,mn−1) are real numbers.
Then the joint pdf of X1,n,m̄,k, X2,n,m̄,k, . . . , Xn,n,m̄,k is given by [see Kamps 1995a]

f1,2,...,n(x1, . . . , xn) = k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

f(xi)[F̄ (xi)]
mi

)
[F̄ (xn)]

k−1f(xn),

F−1(0) < x1 < · · · < xn < F−1(1), F̄ (.) = 1− F (.), (1.1)

where

γj = k + n− j +
n−1∑
i=j

mi. (1.2)

Different models can be deduced from (1.1) as follows:

1. Let m1 = m2 = · · · = mn−1 = 0 and k = 1 in (1.1) and (1.2), then GOS → OOS [see
Arnold et al. (1992)].

f1,2,...,n(x1, x2 . . . , xn) = n!
n∏

i=1

f(xi). (1.3)

2. Let m1 = m2 = · · · = mn−1 = −1 and k = 1 in (1.1) and (1.2), then GOS → upper
RV [see Arnold et al. (1998)].

f1,2,...,n(x1, x2 . . . , xn) = f(xn)
n−1∏
i=1

f(xi)

F̄ (xi)
. (1.4)

3. Let m1 = m2 = · · · = mn−1 = −1 and k > 1 in (1.1) and (1.2), then GOS → k-th RV.

4. Let mi = Ri, i = 1, 2, . . . ,m − 1 and k = Rm + 1 in (1.1) and (1.2), then GOS →
Type-II progressive censoring with removal scheme (R1, R2, . . . , Rm) [see Balakrishnan
and Aggarwala (2000)].
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Throughout this paper, we consider the pdf of the r-th GOS Xr,n,m,k when
m1 = m2 = · · · = mn−1 = m which is given by: [see Kamps (1995)]

fXr,n,m,k
(x) =

cr−1

(r − 1)!
f(x)[1− F (x)]γr−1gr−1

m F (x),

−∞ < x <∞, (1.5)

where

gm(F (x)) = hm(F (x))− hm(0), (1.6)

hm(F (x)) =


−(1−F (x))m+1

m+1
, m ̸= −1,

− ln(1− F (x)), m = −1,

(1.7)

and

cr−1 =
r∏

i=1

γi, γi = k + (n− i)(m+ 1). (1.8)

The joint pdf of Xr,n,m,k and Xs,n,m,k, 1 ≤ r < s ≤ n− 1 when m1 = m2 = · · · = mn−1 = m
is given by

fXr;n,m,k,Xs;n,m,k
(x, y) =

cs−1

(r − 1)!(s− r − 1)!
{1− F (x)}mgr−1

m F (x)

× {hm[F (y)− hm(F (x)]}s−r−1{1− F (y)}γs−1

× f(x)f(y), −∞ < x < y <∞. (1.9)

2. EXACT MOMENTS OF GOS

2.1 The doubly truncated power function distribution

A random variable X is said to have the doubly truncated power function distribution if its
pdf is given by

f(x) =
θ

P −Q
xθ−1, 0 < Q1 ≤ x ≤ P1 < 1, θ > 0, (2.1)

where P = P θ
1 and Q = Qθ

1. The cdf is given by

F (x) =
xθ

P −Q
−Q2, Q1 ≤ x ≤ P1, θ > 0, (2.2)

where Q2 =
Q

P−Q
and P2 =

P
P−Q

.
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The complete pdf and cdf of the power function distribution can be obtained, respectively,
from (2.1) and (2.2) when Q1 = 0 and P1 = 1. For more details of the power function and
its properties, see Johnson, Kotz and Balakrishnan (1994).

Single moments of GOS The single moments of GOS from the doubly truncated power
function distribution are given in the following theorem.

Theorem (1):

The moment generating function of the r-th GOS from the doubly truncated power
function distribution is given by

MXr;n,m,k
(t) =



θcr−1

(r−1)!(m+1)r−1

∑∞
d=0

∑r−1
j=0

∑γ(r−j)−1

i=0

(
r−1
j

)(
γ(r−j)−1

i

)
× (−1)j+itdP

γ(r−j)−1−i

d!(P−Q)
γ(r−j) {P

θ(i+1)+d
1 −Q

θ(i+1)+d
1

θ(i+1)+d
}, m ̸= −1,

kr
∑∞

d=0

∑d/θ
j=0

(
d/θ
j

) td(P )d/θ(−1)j

P j
2 d!(k+j)r

, m = −1.

(2.3)

Hence, the a-th single moment of the r-th GOS is

µ
(a)
r;n,k,m =



θcr−1

(r−1)!(m+1)r−1

∑r−1
j=0

∑γ(r−j)−1

i=0

(
r−1
j

)(
γ(r−j)−1

i

)
× (−1)j+iP

γ(r−j)
2

P 1+i {P
θ(i+1)+a
1 −Q

θ(i+1)+a
1

θ(i+1)+a
}, m ̸= −1,

kr
∑a

θ
j=0

(a
θ
j

) (P )
a
θ (−1)j

P j
2 (k+j)r

, m = −1.

(2.4)

The moment generating function of the r-th GOS from the complete power function distri-
bution derived by Saran and Pandy (2003) can be obtained from our result in (2.3) as a
special case. That is

MXr;n,m,k
(t) =

θcr−1(−1)r−1et

(r − 1)!(m+ 1)r−1

∞∑
d=0

r−1∑
j=0

(
r − 1

j

)
(−1)j+dtd

d!(θ(m+ 1)(r − 1− j) + γr + d)
.

(2.5)

Special cases:

From Theorem (1), we deduce some special cases as follows:
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1. Letm = 0 and k = 1 in (2.4), we get single moments of OOS from the doubly truncated
power function distribution as

µ(a)
r:n =

θcr−1

(r − 1)!

r−1∑
j=0

n−r+j∑
i=0

(
r − 1

j

)(
n− r + j

i

)
(−1)j+i

(P −Q)n−r+j+1

× P n−r−i{P
θ(i+1)+a
1 −Q

θ(i+1)+a
1

θ(i+ 1) + a
}. (2.6)

(a) If n = r = 1, then from (2.6), we get

µ
(a)
1:1 =

θ

θ + a
[P2P

a
1 −Q2Q

a
1]. (2.7)

(b) IF r = n, P = 1 and Q = 0, then from (2.6), we get

µ(a)
n:n =

nθ

nθ + a
. (2.8)

(c) If n = r = 1, we get

µ
(a)
1:1 =

θ

θ + a
. (2.9)

The results (2.7)-(2.9) are given in Balakrishnan and Sultan (1998).

2. If Q = 0 (right truncated power function), 1 ≤ r ≤ n− 1, a
θ
+ 1 > 1, then from (2.4),

we have

µ
(a)
r,n,m,k =

cr−1

(r − 1)!(m+ 1)(r−1)

r−1∑
j=0

(
r − 1

j

)
(−1)jP a/θΓ(a/θ + 1)Γ(γ(r−j))

Γ(a/θ + 1 + γ(r−j))
,

(2.10)

hence, when m = 0 and k = 1, we get (OOS)

µ(a)
r:n =

n!

(n− r)!(r − 1)!

r−1∑
j=0

(
r − 1

j

)
(−1)jP a/θΓ(a/θ + 1)Γ(n− r + j + 1)

Γ(a/θ + n− r + j + 2)

= P a/θΓ(a/θ + r)Γ(n+ 1)

Γ(r)Γ(a/θ + n+ 1)
. (2.11)

The results in (2.10) and (2.11) are given in Kamps (1995a). If P = 1 (complete power
function) and 1 ≤ r ≤ n− 1, then form (2.11), we get

µ(a)
r:n = E(Xa

r;n,m,k) =
cr−1

(r − 1)!(m+ 1)r−1

r−1∑
j=0

(
r − 1

j

)
(−1)j

Γ(a/θ + 1)Γ(γ(r−j))

Γ(a/θ + 1 + γ(r−j))
.

(2.12)
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3. Setting m = −1 and k > 1 k-th (RV) in (2.4), we get

µ(a)
r:n = E(Xa

r,n,−1,k) = kr
a/θ∑
j=0

(
a/θ

j

)
P a/θ(−1)j

P j
2 (j + k)r

. (2.13)

This result is given by Kamps (1995a) when Q = 0 as

µ(a)
r = E(Xa

Uk
(r)
) = kr

a/θ∑
j=0

(
a/θ

j

)
P a/θ(−1)j

(j + k)r
. (2.14)

4. Setting m = −1 and k = 1 (RV) in (2.15), we get

µ(a)
r:n = E(Xa

(r;n,−1,1)) =

a/θ∑
j=0

(
a/θ

j

)
P a/θ(−1)j

P j
2 (j + 1)r

. (2.15)

This result is given in see Ahsanullah (1988).

Double moments Let X1,n,m,k, X2,n,m,k, . . . , Xn,n,m,k represent the GOS from the doubly
truncated power function distribution. Then the double moments of GOS are given in the
following theorem

Theorem (2):

The joint moment generating function of the GOS Xr,n,m,k and Xs;n,m,k from the doubly
truncated power function distribution is given by
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MXr;n,m,k,Xs;n,m,k
(t1, t2) =



cs−1θ2

(r−1)!(s−r−1)!(m+1)s−2(P−Q)(m+1)(s−r−1)+γs+1

×
∑∞

d2=0

∑s−r−1
j2=0

∑(m+1)j2+γs−1
i2=0

(
s−r−1

j2

)
×
(
(m+1)j2+γs−1

i2

)∑∞
d1=0

∑r−1
j1=0

∑(m+1)(s−r−j2+j1)−1
i1=0

×
(
r−1
j1

)(
(m+1)(s−r−j2+j1)−1

i1

)
× (−1)j2+i2 t

d2
2 P (m+1)(s−r−j2+j1)−1−i1 (−1)j1+i1 t

d1
1

d2!(P−Q)(m+1)j1+m(θ(i2+1)+d2)d1!

×
{
P

θ(i2+1)+d2
1 (

P
θ(i1+1)+d1
1 −Q

θ(i1+1)+d1
1

θ(i1+1)+d1
)

−P
θ(i2+i1+2)+d2+d1
1 −Q

θ(i2+i1+2)+d2+d1
1

θ(i2+i1+2)+d2+d1

}
,m ̸= −1,

ks

(r−1)!(s−r−1)!

∑n−1
i=0

∑∞
d2=0

∑s−r−1
j2=0

∑d2/θ
i2=0

(
s−r−1

j2

)(
d2/θ
i2

)
× (−1)j2+i2+1(P−Q)d2/θP

d2/θ−i2
2 t

d2
2 Γ(s−r−j2)

d2!(i2+k)s−r−j2 i!

∑∞
d1=0

∑d1/θ
i1=0

(
d1/θ
i1

)
× t

d1
1 (P−Q)d1/θP

d1/θ−i1
2 (−1)i1

d1!
Γ(r+j2+i1)

(i1+1)r+j2+i1
,m = −1.

(2.16)

Then, the (a, b)-th moment (a, b = 0, 1, 2, ...) of the r-th and s-th generalized order statistics
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(r, s = 1, 2, ...), r < s, is given by

µ
(a,b)
r;s,m,k =



cs−1θ2

(r−1)!(s−r−1)!(m+1)s−2(P−Q)(m+1)(s−r−1)+γs+1

∑s−r−1
j2=0

∑(m+1)j2+γs−1
i2=0

×
(
s−r−1

j2

)(
(m+1)j2+γs−1

i2

)∑r−1
j1=0

∑(m+1)(s−r−j2+j1)−1
i1=0

×
(
r−1
j1

)(
(m+1)(s−r−j2+j1)−1

i1

)
(−1)j2+i2P (m+1)(s−r−j2+j1)−1−i1 (−1)j1+i1

(P−Q)(m+1)j1+m(θ(i2+1)+b)

× {P θ(i2+1)+b
1 (

P
θ(i1+1)+a
1 −Q

θ(i1+1)+a
1

θ(i1+1)+a
)− P

θ(i2+i1+2)+b+a
1 −Q

θ(i2+i1+2)+b+a
1

θ(i2+i1+2)+b+a
},

m ̸= −1,

ks

(r−1)!(s−r−1)!

∑n−1
i=0

∑s−r−1
j2=0

∑b/θ
i2=0

∑a/θ
i1=0

(
a/θ
i1

)(
s−r−1

j2

)(
b/θ
i2

)
× (−1)j2+i2+1i1 (P−Q)b/θ+a/θP

b/θ−i2+a/θ−i1
2

i!
× Γ(s−r−j2+k)Γ(r+j2+i1)

(i2+1)s−r−j2+k(i1+1)r+j2+i1
,

m = −1.

(2.17)

Special cases:

Form Theorem (2), we deduce some special cases as follows:

1. Setting m = 0 and k = 1 (OOS), a, b ∈ N and 1 ≤ r < s ≤ n − 1, s − r ≥ 2,
n = 1, 2, . . . . Then from (2.17), we get

µ(a,b)
r,s:n =

cs−1θ
2

(r − 1)!(s− r − 1)!(P −Q)n−r+1

×
s−r−1∑
j2=0

j2+n−s∑
i2=0

(
s− r − 1

j2

)(
j2 + n− s

i2

)
(−1)j2+i2

×
r−1∑
j1=0

s−r−j2+j1−1∑
i1=0

(
r − 1

j1

)(
s− r − j2 + j1 − 1

i1

)
× P s−r−j2+j1−1−i1(−1)j1+i1

(P −Q)j1(θ(i2 + 1) + b)

× {P θ(i2+1)+b
1 (

P
θ(i1+1)+a
1 −Q

θ(i1+1)+a
1

θ(i1 + 1) + a
)

− P
θ(i2+i1+2)+b+a
1 −Q

θ(i2+i1+2)+b+a
1

θ(i2 + i1 + 2) + b+ a
} (2.18)

As a check, we set b = 0 in (2.18), we get (2.4) that is µ
(a,0)
r,s:n = µ

(a)
r:n.
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2. Setting Q = 0 (right truncated power function), a, b ∈ N and 1 ≤ r < s ≤ n−1, s−r ≥
2, a

θ
+ 1 > 1 and b

θ
+ 1 > 1, Then from (2.18), we get

µ(a,b)
r,s:n = P a/θ+b/θΓ(a/θ + r)Γ(n+ 1)Γ(s+ a/θ + b/θ)

Γ(r)Γ(a/θ + s)Γ(a/θ + b/θ + n+ 1)
, (2.19)

when P = 1 (complete power function), we get

µ(a,b)
r,s:n =

Γ(a/θ + r)Γ(n+ 1)Γ(s+ a/θ + b/θ)

Γ(r)Γ(a/θ + s)Γ(a/θ + b/θ + n+ 1)
. (2.20)

The results (2.19) and (2.20) are given by Balakrishnan and Sultan (1998).

3. Setting m = −1 and k = 1 (RV) in (2.18), we get

µ(a,b)
r,s:n =

1

(r − 1)!(s− r − 1)!

×
n−1∑
i=0

s−r−1∑
j2=0

b/θ∑
i2=0

a/θ∑
i1=0

(
a/θ

i1

)(
s− r − 1

j2

)(
b/θ

i2

)

× (−1)j2+i2+1i1(P −Q)b/θ+a/θP
b/θ−i2+a/θ−i1
2

i!

× Γ(s− r − j2 + 1)Γ(r + j2 + i1)

(i2 + 1)s−r−j2+1(i1 + 1)r+j2+i1
. (2.21)

As a check, we set b = 0 in (2.21), we get µ
(a,0)
r,s:n = µ

(a)
r .

2.2 The doubly truncated Log-logistic distribution

A random variable X is said to have a doubly truncated Log-logistic distribution if its pdf
is of the form

f(x) =
θxθ−1

(P −Q)(1 + xθ)2
, 0 < Q1 ≤ x ≤ P1 < 1, θ > 0, (2.22)

where P = P θ
1 /(1 + P θ

1 ) and Q = Qθ
1/(1 +Qθ

1). The cdf is of the form

F (x) = Q2 −
1

(P −Q)(1 + xθ)
, Q1 ≤ x ≤ P1, θ > 0, (2.23)

where Q2 = 1−Q
P−Q

and P2 = 1−P
P−Q

. The pdf and cdf of the Log-logistic distribution can be

obtained, respectively, from (2.22) and (2.23) by setting Q1 = 0 and P1 = 1 [see Johnson,
Kotz and Balakrishnan (1995)].
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Single moments In the following theorem, we derive the exact form of the single moment
of GOS from the doubly truncated Log-logistic distribution, then we given the corresponding
moments.

Theorem (3):

Let X1,n,m,k, X1,n,m,k, . . . , Xn,n,m,k represent the GOS from the doubly truncated Log-
logistic distribution, then the single moment of the r-th GOS is given by

µ
(a)
Xr;n,m,k

=



cr−1

(r−1)!(m+1)r−1

∑r−1
j=0

∑γ(r−j)−1

i=0

(
r−1
j

)(
γ(r−j)−1

i

)
× (−1)j+iP i

2

(P−Q)
γ(r−j)−iB

(
a/θ + 1, γ(r−j) − i− a/θ

)
× {I1−Q

(
a/θ + 1, γ(r−j) − i− a/θ

)
I1−P

(
a/θ + 1, γ(r−j) − i− a/θ

)
},m ̸= −1,

∑[a/θ]
j=0

(
[a/θ]
j

) (−1)[a/θ]−j

P j

(
1

P j
2

− 1
(1+P2)j

)
,m = −1.

(2.24)

where Iα(a, b) is the incomplete beta ratio defined by

Iα(a, b) =
1

B(a, b)

∫ α

0

ta−1(1− t)b−1dt. (2.25)

Special cases: From Theorem (3), we deduce some special cases as follows:

1. Setting m = 0 and k = 1 (OOS) in (2.25), we get cr−1 =
∏r

j=1 γj where γr = n− r+1,
1 ≤ r ≤ n− 1, n = 1, 2, ... and

µ(a)
r:n =

n!

(r − 1)!(n− r)!

r−1∑
j=0

n−r+j∑
i=0

(
r − 1

j

)(
n− r + j

i

)
× (−1)j+iP i

2

(P −Q)n−r+j−i
B (a/θ + 1, n− r + j − i− a/θ + 1)

× {I1−Q (a/θ + 1, n− r + j − i− a/θ + 1)

− I1−P (a/θ + 1, n− r + j − i− a/θ + 1)}, (2.26)

hence hen n = r = 1 for a = 1, 2, ..,, we get

µ
(a)
1:1 =

1

(P −Q)
B (a/θ + 1, 1− a/θ)

× {I1−Q (a/θ + 1, 1− a/θ)− I1−P (a/θ + 1, 1− a/θ)}. (2.27)
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2. Setting Q = 0 (right truncated Log-logistic) and for a = 1, 2, . . . , 1 ≤ r ≤ n − 1, and
a
θ
+ 1 > 1. Then from (2.24), we have

µ(a)
r:n =



cr−1

(r−1)!(m+1)r−1

∑r−1
j=0

∑γ(r−j)−1

i=0

(
r−1
j

)(
γ(r−j)−1

i

)
× (−1)j+i(1−P )i

P
γ(r−j) B

(
a/θ + 1, γ(r−j) − i− a/θ

)
× {B

(
a/θ + 1, γ(r−j) − i− a/θ

)
I1−P

(
a/θ + 1, γ(r−j) − i− a/θ

)
}, m ̸= −1,

∑[a/θ]
j=0

(
[a/θ]
j

) (−1)[a/θ]−j

P j

(
1

P j
2

− 1
(1+P2)j

)
,m = −1.

(2.28)

Then, when m = 0 and k = 1 (OOS), we get

µ(a)
r:n = E(Xa

r;n) =
n!

(r − 1)!(n− r)!

r−1∑
j=0

n−r+j∑
i=0

(
r − 1

j

)(
n− r + j

i

)
× (−1)j+i(1− P )i

P n−r+j
B (a/θ + 1, n− r + j − i− a/θ + 1)

× B (a/θ + 1, n− r + j − i− a/θ + 1)

− I1−P (a/θ + 1, n− r + j − i− a/θ + 1)}. (2.29)

3. Setting P = 1 (Log-logistic) and for a = 1, 2, .., and 1 ≤ r ≤ n− 1, n = 1, 2, .... Then
form (2.28), we have

µ
(a)
r:n,m,k = E(Xa

(r;n,m,k)) =


cr−1

(r−1)!(m+1)r−1

∑r−1
j=0

(
r−1
j

)
(−1)j

×B
(
a/θ + 1, γ(r−j) − a/θ

)
, m ̸= −1,

∑a/θ
j=0

(
a/θ
j

)
(−1)j

(
k

k−a/θ+j

)r
, m = −1.

(2.30)

Hence, when m = 0 and k = 1 (OOS), we get

µ(a)
r:n = E(Xa

r;n) =
n!

(r − 1)!(n− r)!

r−1∑
j=0

(
r − 1

j

)
(−1)j

× B (a/θ + 1, n− r + j − a/θ + 1) . (2.31)

From (2.31), when n = r = 1 and a = 1, 2, . . . , we get

µ
(a)
1:1 = E(Xa) = Γ (a/θ + 1)Γ (1− a/θ) , (2.32)
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and hence when m = −1 and k = 1 (ORV),we get

µ(a)
r:n =

a/θ∑
j=0

(
a/θ

j

)
(−1)j

(
1

1− a/θ + j

)r

. (2.33)

Double moments In the following theorem, we derive the double moments of the GOS
from the Log-logistic distribution.

Theorem (4):

Let Xr,n,m,k and Xs,n,m,k, r < s be the r-th and s-th GOS from the Log-logistics distri-
bution, then the (a, b)-th double moment is given by

µ
(a,b)
r;s,m,k =



cs−1

(r−1)!(s−r−1)!(m+1)s−2

∑s−r−1
j=0

∑r−1
i=0

(
s−r−1

j

)(
r−1
i

)
(−1)j+i

× β(b/θ + 1, γs−j − b/θ)β(a/θ + 1, γs−r−j+i − a/θ),
m ̸= −1,

ks
∑a/θ

i=0

∑b/θ
j=0

(
a/θ
i

)(
b/θ
j

) (−1)i+j

(k−b/θ+i)s−r(k−a/θ+i)r
, m = −1.

(2.34)

Special cases:

From Theorem (4), we deduce some special cases as follows:

1. Setting m = 0 and k = 1 (OOS) in (2.34), we get

µ(a,b)
r:n =

n!

(n− s)!(r − 1)!(s− r − 1)!

s−r−1∑
j=0

r−1∑
i=0

(
s− r − 1

j

)(
r − 1

i

)
(−1)j+i

B(b/θ + 1, n− s− b/θ + 1)B(a/θ + 1, n− s+ r + j − i− a/θ + 1).

(2.35)

2. Setting m = −1 and k = 1 (RV) in (2.34), we get

µ(a,b)
r;s =

a/θ∑
i=0

b/θ∑
j=0

(
a/θ

i

)(
b/θ

j

)
(−1)i+j

(1− b/θ + i)s−r(1− a/θ + i)r
. (2.36)

3. RECURRENCE RELATIONS BASED ON GOS FROM DOUBLY
TRUNCATED POWER FUNCTION

In this section, we establish some new recurrence relation between the single moments of
GOS from the doubly truncated power function distribution by using the hypergeometric
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function. By using the relations between the pdf and cdf of the doubly truncated power
function distribution we can write

x = (P −Q)1/θ[Q2 + Fd(x)]
1/θ. (3.1)

Then from (3.1), the single moments of GOS from doubly truncated power function can be
derived in terms of the hypergeometric function as

µ
(a)
r,n,m,k =

cr−1P
−A

(r − 1)!(m+ 1)r−1

r−1∑
j=0

(
r − 1

j

)
(−1)j

1

B
2F1(A,B;B + 1; z),

(3.2)

where z = 1
P2
, A = −a/θ, B = γr−j = k+(n− (r− j))(m+1) and 2F1(A,B;B+1; z) is the

hypergeometric function.

By using the properties of the hypergeometric function 2F1(a, b, c, z) given in Rainville
(1971), establish some new recurrence relations as given in the following theorem.

Theorem (5):

The single moments of GOS from the doubly truncated power function distribution strat-
ify the following recurrence relations:

(γr + a/θ)µ
(a)
r;n,m,k = a/θPµ

(a−θ)
r;n,m,k + γrµ

(a)
r+1;n,m,k (3.3)

(γ1 + a/θ)µ
(a)
r;n,m,k = a/θP, µ

(a−θ)
r;n,m,k + γ1µ

(a)
r−1;n−1,m,k, (3.4)

(γr + a/θ)Qµ
(a)
r;n,m,k = (k + n(m+ 1) + a/θ)µ

(a+θ)
r;n,m,k − r(m+ 1)Pµ

(a)
r+1;n,m,k,

(3.5)

(k + n(m+ 1))Qµ
(a)
r;n,m,k = (k + n(m+ 1))Pµ

(a−θ)
r;n,m,k −

rP

P2

µ
(a)
r+1;n+1,m,k, (3.6)

where m ̸= −1.

4. ESTIMATION BASED ON GOS FROM LOG-LOGISTIC
DISTRIBUTION

Let X be a random variable from the the tow-parameter Log-logistic distribution with scale
parameter σ as

f(x; σ) =
θ(x

σ
)θ−1

σ
(
1 + (x

σ
)θ
)2 , x ≥ 0, θ ≥ 1, σ > 0, (4.1)

1062



and the cdf is

F (x;σ) = 1− 1

1 + (x
σ
)θ
, , x ≥ 0, θ ≥ 1, σ > 0. (4.2)

when σ = 1, then the pdf of Log-logistic distribution given in (4.1) reduces to the one-
parameter Log-logistic distribution given in (3.23)

4.1 Best linear unbiased estimation (BLUE)

Let X1,n,m,k ≤ X2;n,m,k ≤ ... ≤ Xn,n,m,k denote the available GOS from the Log-logistic distri-
bution in (4.1), and let Zi,n,m,k = Xi,n,m,k/σ, i = 1, 2, ..., n be the corresponding GOS from the
one-parameter Log-logistic distribution. Let us denote E(Zi,n,m,k) by µi,n,m,k, V ar(Zi,n,m,k)
by σi,i,n,m,k and Cov(Zi,n,m,k, Zj,n,m,k) by σi,j,n,m,k. Further, let

X = (X1,n,m,k, X2,n,m,k, ..., Xn,n,m,k)
T ,

µ = (µ1,n,m,k, µ2,n,m,k, ..., µn,n,m,k)
T

Ω = ((σi,j,n,m,k)), 1 ≤ i, j ≤ n, (4.3)

where Ω is a positive definite symmetric matrix of order n.
Then, the best linear unbiased estimate (BLUE) of σ is given by [see Balakrishnan and
Cohen (1991) and Arnold, Balakrishnan and Nagarja (1998)]

σ∗ = { µ
TΩ−1

µTΩ−1µ
}X =

n∑
i=1

aiXi,n,m,k (4.4)

Furthermore, the variance of this BLUE is given by

V ar{σ∗} =
σ2

µTΩ−1µ
. (4.5)

By using the exact explicit expressions of the moments of the GOS from the one-parameter
Log-logistic distribution given in (2.30) and (2.35), we have

1. If m ̸= −1 for 1 ≤ r ≤ n− 1 and k = 1, 2, ...

µi,n,m,k =
ci−1

(i− 1)!(m+ 1)i−1

i−1∑
ℓ=0

(
i− 1

ℓ

)
(−1)ℓβ(

1

θ
+ 1, γ(i−ℓ) −

1

θ
)

µ
(2)
i;n,m,k =

ci−1

(i− 1)!(m+ 1)i−1

i−1∑
ℓ=0

(
i− 1

ℓ

)
(−1)ℓβ(

2

θ
+ 1, γ(i−ℓ) −

2

θ
)
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and

µi,j;n,m,k =
cj−1

(i− 1)!(j − i− 1)!(m+ 1)j−2

×
j−i−1∑
ℓ1=0

i−1∑
ℓ2=0

(
j − i− 1

ℓ2

)(
i− 1

ℓ1

)
(−1)ℓ1+ℓ2

× β(
1

θ
+ 1, γ(j−ℓ2) −

1

θ
)β(

1

θ
+ 1, (m+ 1)(j − i+ ℓ1 − ℓ2)−

1

θ
),

where γr = k + (n − r)(m + 1), cr−1 =
∏r

i=1 γi and β(., .) is the beta function. The
moments of order statistics OOS can be obtained from (4.6), (4.7) and (4.8), then
we use these moments to calculate the coefficients of BLUE from (4.4). Table (1)
represents the BLUE of the scale parameter of the Log-logistic distribution when n =
5, 15, 20, 25, 30 and θ = 4.

2. If m = −1, k = 1, we get the moments of the upper RV

µU(i) =

δ1∑
ℓ=0

(
δ1
ℓ

)
(−1)ℓ(

1

1 + ℓ− δ1
)i, (4.6)

µ
(2)
U(i) =

δ2∑
ℓ=0

(
δ2
ℓ

)
(−1)ℓ(

1

1 + ℓ− δ2
)i, (4.7)

and

µU(i,j) =

δ1∑
ℓ2=0

δ1∑
ℓ1=0

(
δ1
ℓ1

)(
δ1
ℓ2

)
(−1)ℓ2+ℓ1(ℓ1 + 1− δ1)

i

(1 + ℓ1 − δ1)j(1 + ℓ1 + ℓ2 − δ2)i
.

(4.8)

Example: In this example, sample of 5 order statistics is generated from the Log-logistic
distribution with σ = 1, θ = 4 as: 0.2817, 0.5489, 0.9496, 1.2863, 2.9003. Next, and use the
entries of Table (1), we have

σ∗ = 0.2817× 0.0729 + 0.1759× 0.5489 + 0.2543× 0.9496

+0.2470× 1.2863 + 0.1298× 2.900 = 1.05.
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Table 1: The Coefficient of the BLUE ai, i = 1, 2, . . . n, when θ = 4 and σ = 1.
n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
0.0729 0.1298 0.0146 0.0010 0.0001 0.0000
0.1759 0.0073 0.0007 0.0001 0.0000 0.0000
0.2543 0.0291 0.0041 0.0005 0.0001 0.0000
0.2470 0.0695 0.0135 0.0021 0.0003 0.0002
0.1298 0.1230 0.0328 0.0065 0.0011 0.0006

0.1717 0.0637 0.0159 0.0033 0.0017
0.1903 0.1032 0.0325 0.0079 0.0040
0.1643 0.1417 0.0572 0.0167 0.0086
0.1071 0.1647 0.0882 0.0308 0.0165
0.0503 0.1601 0.1199 0.0510 0.0287

0.1283 0.1431 0.0763 0.0456
0.0833 0.1490 0.1029 0.0666
0.0429 0.1339 0.1250 0.0893
0.0172 0.1028 0.1359 0.1098
0.0051 0.0667 0.1314 0.1231

0.0361 0.1122 0.1252
0.0161 0.0839 0.1149
0.0058 0.0546 0.0946
0.0016 0.0306 0.0695
0.0004 0.0146 0.0453

0.0059 0.0260
0.0020 0.0131
0.0005 0.0057
0.0001 0.0022

0.0007
0.0002
0.0000
0.0000
0.0000
0.0000
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4.2 MLE

The likelihood function L based on the n GOS from the Log-logistic distribution can be
written as

L(σ|X) = k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

(1− F (xi))
mf(xi)

)
(1− F (xn))

k−1f(xn)

=

(
n∏

j=1

γj

)
n−1∏
i=1

(
θ(xi

σ
)θ−1

σ
(
1 + (xi

σ
)θ
)m+2

)
θ(xn

σ
)θ−1

σ
(
1 + (xn

σ
)θ
)k+1

(4.9)

where X = (X(1,n,m,k), ..., X(n,n,m,k)) and γn = k. Hence

logL(σ|X) =
n∑

j=1

log (γj) + n(log(θ)− log(σ)) + (θ − 1)
n∑

i=1

(ln(xi)− ln(σ))

− (m+ 2)
n−1∑
i=1

log
(
1 + (

xi
σ
)θ
)
− (k + 1)ln

(
1 + (

xn
σ
)θ
)

(4.10)

Differentiating with respect to σ, then the MLE of σ can be obtained by solving the following
nonlinear equation

−n+ (m+ 2)
n−1∑
i=1

(
(xi

σ
)θ

1 + (xi

σ
)θ

)
+ (k + 1)

(
(xn

σ
)θ

1 + (xn

σ
)θ

)
= 0. (4.11)

From (4.14), we have

1. If m = 0 and k = 1 (OOS)

n∑
i=1

{
(xi

σ
)θ

1 + (xi

σ
)θ
} =

n

2
(4.12)

2. If m = −1 and k = 1 (RV)

n−1∑
i=1

{
(xi

σ
)θ

1 + (xi

σ
)θ
}+ 2{

(xn

σ
)θ

1 + (xn

σ
)θ
} = n. (4.13)

The MSE of the MLE and the BLUE of the scale parameter based on order statistics from
the Log-logistic distribution are calculated in Table (2). Similar argument can be done based
on RV from the Log-logistic distribution.

From the Table (2), we see both of the MLE and BLUE of the scale parameter are
perform well in small and large sample of order statistics from the Log-logistic distribution.
Also both estimates are consistent in mean squared error. The BLUE behave quite better
than the MLE starting from n = 10.
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Table 2: Table (2): The MSEs of BLUE and MLE of the scale parameter
n MSE(σ̂) MSE(σ∗)
5 0.04532 0.00810
10 0.02045 0.00019
15 0.01363 0.00001
20 0.00948 0.00001
25 0.00765 0.00001
30 0.00637 0.00001
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ABSTRACT 

 

In 1997, Indonesia suffered an economic crisis. This crisis had a great impact on the livelihoods 

in Indonesia. In this paper we estimate the effect of the crisis on demand for house 

characteristics. We express the demand on house characteristics in terms of willingness to pay, 

which is elicited from a hedonic price model. To estimate the crisis effect, we adopt a continuous 

time modeling approach, namely the exact discrete time– structural equation model (EDM-

SEM), and apply it to a three-wave panel data set of Indonesia Family Life Survey (IFLS). We 

show that due to the crisis, the average valuation on certain house characteristics is reduced by 

46.52%. 

 

Keywords: Exact discrete time model, structural equation model, panel data, hedonic price 

model, economic crisis effect.  

 

1. INTRODUCTION 

 

Starting in September 1997, a crisis hit the Indonesian economy and lasted until the beginning of 

1999. This crisis resulted in a high inflation rate. During 1998, inflation reached 77.63% (BPS, 

2001). This high inflation rate had a great impact on Indonesian livelihoods. Particularly at the 

household level, the crisis decreased household real income significantly. Generally, a decrease 

of income will decrease the demand on goods and services, including the demand on house 

characteristics. 

We observed that only one study of demand on house characteristics during an economic 

crisis, namely Suparman et al. (2008). They conducted a hedonic price study to estimate the 

demand of house characteristics, particularly in-house piped water service, which are expressed 

in the terms of willingness to pay (WTP). By means of a discrete time model, the estimation was 

based on three-wave Indonesia Family Life Survey (IFLS) panel data, whose time interval 

covered the 1997 crisis. Suparman et al. accommodated the crisis effect implicitly by allowing 

the intercepts in the model to be varied. No explicit crisis effect parameter was defined in their 

model. 

In the current paper we aim to estimate the effect of the 1997 economic crisis on the demand 

on house characteristics by applying a continuous time model, namely the exact discrete time – 

structural equation model (EDM-SEM) (Oud and Jansen, 2000). We use the same data set as 

Suparman et al. (2008) i.e. the three-wave IFLS panel data set and extend their model by 

introducing continuous time parameters and constraints and crisis effect parameters.  
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The paper is organized as follow. In section 2, we discuss the EDM-SEM. The proposed 

hedonic price model for estimating the 1997 economic crisis effect is presented in section 3. We 

provide the empirical results and discussion in section 4. Section 5 concludes and summarizes 

our findings. 

 

 

2. EXACT DISCRETE TIME MODEL - STRUCTURAL EQUATION MODEL 

 

In econometrics, dynamic models are typically specified as discrete time (DT) models, although 

several authors including Koopmans (1950), Gandolfo (1981), Bergstrom (1988), and Phillips 

(1993) have strongly recommended continuous time (CT) models.  The arguments presented in 

these sources to use CT models instead of DT models can be summarized as follows. First, real 

life socioeconomic processes evolve in CT, since they are the outcomes of large numbers of 

decisions concluded at different points in time. By their very nature, continuously evolving 

processes are more adequately represented by CT models than by DT models. Secondly, 

modeling results should not depend on the length of the observation interval. In DT modeling, 

this condition is not usually met, as the coefficients of a model estimated on the basis of, e.g. 

weekly data, will typically differ from those estimated on the basis of monthly or yearly data. 

This follows from the fact that the impact of an intervention will typically vary over the 

adjustment interval. For instance, if the adjustment process tails off, impacts measured at short 

intervals will be stronger than impacts measured at longer intervals. For adjustment processes 

that cut off, no impact may be measured for intervals longer than the adjustment interval. 

Furthermore, the sign of an effect may reverse when passing from one interval to another, which 

gives rise to what Oud (2002) refers to as the “paradox of DT modeling”. 

DT models which are made up of systems of difference equations are formulated in relation 

to the data available, for instance yearly or monthly models. In contrast, CT models depart from 

the assumption that there is no obvious time interval that can serve as a natural unit. CT models 

analyze the continuous nature of social processes by means of systems of differential equations.  

A CT state space model describes the development or trajectory of an n-dimensional state 

vector  tx  over time. Oud and Jansen (2000) present the following system of stochastic 

differential equations to describe the trajectory of  tx : 

 
 
 

         
 

dt

td
ttttt

td

td W
GuΒγxΑ

x
 ,                                          

(1) 

 

where  tA , the drift matrix, models the changes in  tx  as functions of the state variables 

themselves while  tΒ  represents the impacts of fixed input variables  tu  on the state variables 

and accommodates for nonzero and nonconstant mean trajectories   txE . In addition to the unit 

variable (1 for all subjects and time points)  tu  may contain other constant or nonconstant 

exogenous variables, for example gender, or socioeconomic status. The trait variables γ , which 

are unobserved and assumed to be constant over time, specify random subject effects which keep 

a subject-specific distance from   txE . The zero mean normally distributed trait variables can be 

viewed as a special kind of state variables, i.e. unobserved and constant over time.   tW  is a 

standard multivariate Wiener process with an identity covariance matrix. The standard Wiener 
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process is transformed into a general Wiener process with an arbitrary covariance matrix    tt GG  

by means of a Cholesky factor  tG . γΦ  and 
0

, txγΦ are the trait variables covariance matrix and 

the trait and the initial state variables covariance matrix, respectively. 

Since the time period in the application below is rather short, we assume time invariant 

parameter matrices in (1), i.e.   AA t ,   BB t  and   GG t . This gives:  

 
 
 

   
 

dt

td
tt

td

td W
GΒuγΑx

x
 .                                                                                (2) 

 

To estimates the CT parameter in (2) based on DT data, we first derive the relations between the 

CT and DT parameters by means of the exact discrete time model (EDM) (Hamerle, Nagl & 

Singer, 1993; Oud & Jansen, 2000). For (2), with a discrete time interval t , the EDM yields:  

 

tttttttttt   wuΒγxΑx , (3) 

With   ttt  Qwcov  and  
t

t


  A
Α e ,    (4a) 

 BIAAB  


 tt
1 , (4b) 

 IAAH  


 tt
1 , (4c) 

ttt   HΦHΦ γγ , (4d) 

00
,, ttt t xγxγ ΦHΦ 


, (4e) 

      GGIIAAAIIAQ  


 rowttt
1

irow . (4f) 

 

γHγ tt    is the DT trait vector with covariance matrix tγΦ . Moreover, 
0

, tt xγΦ


is the covariance 

matrix of the DT traits and the initial states.  is the Kronecker product operation and irow  is 

the inverse operation of row  which puts the elements of a matrix row-wise in a column vector. 

tB is obtained on the assumption that the input variables  tu  are piecewise constant between 

measurements. Observe that all the expressions in (4) involve the nonlinear matrix restriction tAe

.   

The discrete time point t  of the EDM takes values in the set  12100 ,,,   TT ttttt   for 

integers 0t and 2T , with 0t  the initial time point and T  the total number of time points 

considered.  

In many cases the state or input variables cannot be observed directly, i.e. they are latent. The 

state or input variables are represented by one or more observed variables or indicators. In that 

case, an output or measurement model that defines the relationships between latent state 

variables and their indicators have to be added to the EDM. For a point time t , let ty be the 

vector of indicators, tx be the vector of latent state variables, tu  be the vector of input variables, 

tC and tD  be the matrices in which the relations between indicators and the latent state and input 

variables are defined respectively, and tv the vector of measurement errors, then the 

measurement model reads:   

 

tttttt vuDxCy  , with   tt Rv cov  (5) 
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Measurement model (5) combined with the structural model (3) form a structural equation model 

(SEM). Following the SEM model, we apply the assumptions that the elements of tv  are 

normally distributed and they are uncorrelated with the state variables,   0xv ttE  for all t and t .   

For model estimation by means of SEM, we remove tγ  from (3).  Instead, we add γ  to the 

state vector and specify that its element to be identical at both sides of the equation. Accordingly, 

the parameter matrices should be extended. Respectively, the extended initial state mean and 

covariance matrix become:  

 

 










0

xE
μ 0

0

t
t , 
















γγx

γxx

ΦΦ

ΦΦ
Φ

,

,

0

00

0

t

tt

t .           (6) 

 

Denoting the extended state vector  γxx  tt


 and u  as the fixed input vector, in which all input 

variables over all time points are combined, except identical and linearly dependent input 

variables are specified only once. Next, we denote 

 

  xuη  with  
110 Tttt xxxx





        and        0yuy with  

Tttt yyyy 
100 . 

 

Hence, the state model (3) and (5) may be written as the SEM form 

 

ζΒηη  , with  ζζΨ  E ,                                  (7) 

εΛηy  , with  εεΘ  E .                                  (8) 

 

All of the state model parameters are put in the SEM parameter matricesΒ ,Λ ,Ψ  and Θ  (Oud & 

Jansen, 1996).  

The related model implied covariance matrix of (7) and (8) is 

 

      ΘΒIΨΒIΛyyΣ 
 11

E .                                  (9) 

 

The corresponding sample moment matrix is     YYS  Npqpq
1

00
 for the data in  0YUY  . q  is 

the number of fixed element in u  and pTp 0  is the number of elements in observed random 

vector 0y . The span of  iu  for Ni ,,2,1   is to be not less than q -dimensional. If we use the 

maximum likelihood estimation method, the parameter estimates will be obtained by minimizing 

 

   0
1 logtrlog pqFML  

SSΣΣ .        (10) 

 

3. HEDONIC PRICE MODEL 

 

 We apply the EDM-SEM procedure outlined above to estimate the WTP for house 

characteristics in rural areas in Indonesia (Suparman et al., 2008). There is only one directly 

observed state variable in the model, i.e. monthly house rent. This implies an identity 

relationship between the latent and the observed rent variable: 97 y . The input variables 

included in the model are the latent variable household characteristics  1  measured by two 
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observables, viz. household size  1y  and household monthly expenditure  2y ; the latent variable 

house size  2  measured by the observables floor area  3y  and number of rooms  4y . The other 

latent explanatory variables are identical to their indicators. Specifically, they are house 

condition index  53 y , in house tap water   64 y , well water  75 y , and finally, the 

neighborhood characteristics represented by median household monthly expenditure:  86 y .   

The data set is a three-wave panel dataset of 1315 unit observations, collected at 19930 t , 

19971 t  and 20002 t . Accordingly, we have 41 t  and 32 t . For a discrete time point it , 

Suparman et al. (2008) present the following hedonic price model which is formulated to account 

for omitted variables: 

 

1111 7

7

1

6

1

07 
 


iiiiiii t

j

jtjt

j

jtjttt  , for .2,1i                                  (11) 

 

Since (11) has already accounted for omitted variables, the treat variables in (1) that is the 

individual specific component representing the effect of unobservable variables (Hamerle et al., 

1993) or omitted variables, has to be excluded from (11). (11), which assumes that the omitted 

variables develop according to an autoregression model, accounts for omitted variables in a more 

flexible way than (1), which assumes the omitted variables to be constant over time.  

In this EDM model, 
10 it

 's allow for non-linear mean trajectories over time. Their estimation 

is performed under the EDM constraint (4b). The second term of the right handed of (11) is the 

original right sided of hedonic price model. No EDM constraints apply to this model component. 

We assume constant expenditure preferences, i.e. the parameters that reflect the proportion of 

expenditure on rent are constant over time.  The third term is the dynamic part of the model 

originating from the omitted variable bias removal. In this term, we impose the restriction 

111 7 


iii jttjt   for 6,,2,1 j . For further detail on constant preferences and omitted variables 

bias removal constraints, readers may refer to Suparman et al. (2008).   

The autoregression parameters, 
17 it

 ’s, are the dynamic part of the model to which the EDM 

constraint (4a) is applied. The last terms, 
17 it

 ’s, are the error terms of the models. We apply the 

EDM constraint (4f) to these error terms. Since, there is no latent trait variable in the model, 

(4c)-(4e) do not apply. To account for the 1997 economic crisis that hit Indonesia just after the 

second wave of data collection was finished, Suparman et al. (2008) specified the intercepts in 

(11) to be different for 1t  and 1t , without any further constraints. Here we assume that the crisis 

occurred right after 1t , say 
1t . Hence for 2i , we replace 1t  in (11) by 

1t . We furthermore 

assume that the crisis, on average, reduced the household income by the  proportion m  of the 1t  

level. Given the constant preference assumption, the income decrease due to the crisis implies 

that the 
1jt ’s  are reduced by the same proportion. Hence, at 

1t and at 1t , the coefficients are 

related as follows:   

 

11
jtmjt

  , for 6,,2,1 j .                                 (12) 
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The other crisis effects, which cannot be explained by the variables in the model, are aggregated 

in the parameter a . We may interpret a  as the crisis shock to the mean of monthly rent. Thus, 

at 
1t , the intercept is 

 

att i
  00 1

.                                 (13) 

 

We also apply the multiplicative effect to the error terms which gives:   

 

11
77 tmt

  , with    
11

7
2

7
varvar tmt

                                     (14) 

 

Accommodating the 1997 economic crisis effect by substituting (12)-(14) into (11) we obtain for 

2i , 

 

  


1112212 7

7

1

6

1
07 t

j

jtjt
j

jtjttt  .                                 (11) 

 

For further detail on the measurement equation, the data and the derivation of (11), we refer to 

Suparman et al. (2008). 
 

4. EMPIRICAL RESULTS 

 

We used the maximum likelihood procedure to estimate the parameters of the EDM-SEM WTP 

model. For this purpose we used the Mx software package (Neale et al., 2003) which allows 

highly nonlinear parameter matrix restrictions. Estimation results are presented in Table 1. 

For each parameter in Table 1, the first, second and third row are the estimated coefficient, 

standard error and p -value, respectively. The standard errors and p -values are based on 2000 

bootstrap samples of size 1315 (Efron and Tibshirani, 1993). The reason for bootstrapping 

instead of applying standard ML procedures is that the fitted covariance matrix is nearly non-

definite positive, i.e. its determinant is very small. This property would affect the standard ML 

standard errors and p -values, which are functions of the inverse of the fitted covariance matrix 

(Jöreskog, 1973). (This is a similar situation to the multicollinearity problem in regression 

analysis.) 

From the R-square values we can infer that the model provides a good fit. The sign of the 

WTP estimates are positive as expected and the values are equivalent to their respective values in 

Suparman et al. (2008). The  parameter significances are also consistent with Suparman et al. 

(2008),  with the exception of  the WTP estimates for in-house piped water which was not 

significant in our results.  

Now, we return to the crisis effect parameters. We obtain a value of 0.5348 for the 

multiplicative effect estimate. The value tells us that due to the crisis, a WTP for a house 

characteristic is decreased to 46.52% (1-0.5348) of its value just before the crisis. The crisis 

effect on house rent can be estimated as the total of the additive effect and the sum of variables 

in the second terms of (15) multiplied by the multiplicative effect. The results is 1.4425 which 

means that on average, the monthly house rent price in rural area of Indonesia decreased by 
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IDR144,250 due to the 1997 economic crisis which is equivalent to 74.24% of the average of 

house rent just before the crisis.  

 

Table 1. Parameter Estimates 

Variable / Parameter Year 

1997 2000 

Constant term 0.5671 -0.0790 

(0.1617) (0.1385) 

0.00 0.71 

Household characteristics  1  0.0561 0.0529 

(0.0106) (0.0100) 

0.00 0.00 

house size  2  0.0675 0.0636 

(0.0236) (0.0222) 

0.00 0.00 

House conditions index  3  0.1104 0.1041 

(0.0354) (0.0334) 

0.00 0.00 

Presence of in house tap water 
 4  

0.1178 0.1110 

(0.1069) (0.1008) 

0.13 0.13 

Presence of well water  5  0.0047 0.0044 

(0.0713) (0.0671) 

0.48 0.48 

Neighborhood  characteristics 
 6  

0.1401 0.1320 

(0.0415) (0.0391) 

0.00 0.00 

Lagged monthly house rent  7  0.0656 0.0693 

(0.0208) (0.0168) 

0.00 0.00 

Multiplicative crisis effect  m  not 0.5348 

applicable (0.0189) 

 0.00 

Additive crisis effect  a  not -0.6438 

applicable (0.0548) 

 0.00 

Drift  A  -0.6812 

0.1284 

0.00 

Mean trajectory  B  0.4134 

0.1416 

0.00 

R-square 0.63 0.71 
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In this paper we regard the crisis as a structured disturbance, which distorts house rent from 

its “normal behavior” over time. Hence, we need to define the house rent during “normal 

behavior” in order to estimate the crisis effect.  In the case of a standard DT model, we set the 

intercepts to be different, since no further constraint concerning house rent behavior over time 

can be imposed, and thus no crisis constraint can be applied accordingly. In this case, the crisis 

effect is not well defined in the model and hence it is difficult to estimate its effect directly. 

However, it would be possible to estimate its effect by collecting additional data right after the 

crisis and assuming constant intercepts for right before and after the crisis model and defining a 

multiplicative and an additive crisis effect. It will be difficult to determine the time for data 

collection after the crisis though, since it is difficult to pinpoint the time of the crisis end. 

Different observation times may provide different results.  

In contrast, in the EDM-SEM model, we apply the EDM constraint to describe house rent 

behavior over time. Under this assumption and the constant preference assumption, we can 

define the crisis effect as a structured disturbance expressed as two parameters i.e. the 

multiplicative and additive effect. These parameters respectively represent the crisis effect 

through the variables in the model and the one which cannot be explained by the variables in the 

model. 

 

5. CONCLUSION 

 
In this paper, we used an EDM-SEM model to show that the 1997 economic crisis decreased the 
average of household WTP for certain house characteristics by 46.52% and decreased the 
average WTP for renting a house by 74.24% from their respective values right before the crisis.  
In addition, we show that a CT model can provide more information on the effect of a structured 
disturbance than a DT model. 
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ABSTRACT 

 

The aim of this research is to study further some latest development about wavelet 

decomposition for modeling time series with both trend and seasonal patterns. This research 

focuses on the Maximal Overlap Discrete Wavelet Transform (MODWT) and Multiscale 

Autoregressive (MAR) model that firstly proposed by Renaud et al (2003). First, we develop 

new procedure for model building of MAR. This procedure accommodates lags of scale and 

wavelet coefficients proposed by Renaud et al (2003) and some appropriate lags addition. The 

main issue in MAR modeling for trend and seasonal time series is how to determine the best lags 

of scale and wavelet coefficients as predictors in MAR model. In this research, some filters from 

wavelet family are used and compared, i.e. Haar, Daubechies(4), Coiflet(6) and Least 

Asymmetric(8). Data about International Airline Passenger is used as case study. The results 

show that MAR model based on Haar filter yields better result than other filters and ARIMA 

model, both in testing and training data. It is shown by the smallest value of RMSE on both parts 

of data. 

  

Keywords: Trend, seasonal, wavelet, filter, MODWT, MAR. 

 

1. INTRODUCTION 

 

Many business and economic time series are non-stationary time series that contain trend and 

seasonal variations. The trend is the long-term component that represents the growth or decline 

in the time series over an extended period of time. Seasonality is a periodic and recurrent pattern 

caused by factors such as weather, holidays, or repeating promotions. Accurate forecasting of 

trend and seasonal time series is very important for effective decisions in retail, marketing, 

production, inventory control, personnel, and many other business sectors (Makridakis and 

Wheelwright, 1987). 

Wavelet transform is a multiresolution decomposition techniques that can produce a good 

local representation of the signal in both the time domain and the frequency domain, (Mallat, 
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1989; Ogden, 1997). It can be used to make model and estimate data that contain both the 

autocorrelation and the trend, (Nason and von Sachs, 1999). Wavelet analysis processes 

information effectively at different scales and can be very useful for feature detection from 

complex and chaotic time series, (Shin and Han, 2000). It automatically separates the trend from 

the signal or data. The wavelet coeffisients are calculated only from data obtained previously in 

time (Renaud et al, 2003). 

The aim of this paper is to develop procedure from Renaud et al (2003) for forecasting trend 

and seasonal time series, especially in the case of the International Airline Passenger data. To 

determine the best lags of scale and wavelet coefficients as predictors in MAR model, the 

procedure accommodates some appropriate lags addition (i.e. seasonal lags or near-seasonal 

lags) of scale and wavelet coefficients beside lags input selection that proposed by Renaud et al 

(2003). This seasonal lags addition was motivated by the fact that Cross Correlation Functions 

(CCF) between a stationary seasonal time series data Xt with scale or wavelet coefficients form 

appropriate seasonal pattern. It means that the seasonal lags have influence either on the scale or 

wavelet coefficients or on the data Xt. We use Maximal Overlap Discrete Wavelet Transform 

(MODWT) as wavelet decomposition with level J =4 and some filters from wavelet families, 

that is Haar, Daubechies(4) or D4, Coiflet(6) or C6 and Least Asymetric(8) or LA8 to 

comparison. The use of MODWT is reasoned by the MODWT of level J is well defined for any 

sample size N. Whereas the Discrete Wavelet Transform (DWT) of level J restricts the sample 

size to a integer multiple of JN 2 . 

 

2. MULTISCALE PREDICTION BASED MODWT 

 

The motivation for formulating the MODWT is essentially to define a transform that acts as 

much as possible like the DWT, but does not suffer from the DWT’s sensitivity to the choice of a 

starting point for a time series. In Percival and Walden (2000), this sensitivity is entirely due to 

downsampling (subsampling) the outputs from the wavelet and scaling filters at each stage of the 

pyramid algorithm. 

Let define A
~

 as the NN   matrix that contains the MODWT scaling filter g~  and B
~

 as the 

NN   matrix that contains the MODWT wavelet filter h
~

. Let 1J , 1

~
B  be defined as the NN   

matrix as in Equation (1), so that we have XW 11

~~
B . With an analogous definition for 1

~
A , we 

have XV 11

~~
A . Whereas 1

~
A  has a similar structure like 1

~
B   with each lh

~
 being replaced by lg~ .  

 































0123

0123

0123

3012

2301

1230

~~~~
0000000

0
~~~~

000000

00
~~~~

00000

~
0000000

~~~

~~
0000000

~~

~~~
0000000

~

~

hhhh

hhhh

hhhh

hhhh

hhhh

hhhh















1
B                       (1) 

                                 

The first stage of the MODWT pyramid algorithm can be represented as  
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and T

1
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 is an orthonormal matrix. If 

1
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defined as in Equation (3), we can re-express X  as  
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Therefore  

            11

~~~
VWX T

1

T

1
AB                                                     (6) 

 

The MODWT of level J is defined in terms of a computationally efficient pyramid algorithm. In 
efficient pyramid algorithm, computating the jth level MODWT wavelet and scaling coefficients  

jW
~

 and jV
~

 is based upon the scaling coefficients 1

~
jV  of level j-1. In Mallat (1989); Percival and 

Walden (2000), the key to this algorithm is to note the relationship between the filters used to 
compute the coefficients of level j-1 and j. 

The implementation of  MODWT described in Percival and Walden (2000) is used Renaud et 

al. (2003) for MAR modeling. The basic idea is to use the coeffisients 
)1(2,  ktj jw  for jAk ...,,1  

dan Jj ...,,1  and 
)1(2,  ktJ Jv  for  1...,,1  jAk  as predictors. The first point is to know how many 

and which wavelet coefficients will be used at each scale. 
Assume a stationary signal )...,,,( 21 tXXXX   and assume we want to predict 1tX . Type 

prediction used is simplest model for prediction i.e. autoregressive (AR). Recall that to minimise 
its mean square error, the one-step forward prediction of an AR(p)  process is written  

    1111

1

)1(1
ˆ...ˆˆˆˆ





  ptptt

p

k

ktkt XXXXX                           (7) 

k̂  could be estimated by maximum likelihood estimation, Yule-Walker or least squares 

estimation, has the same asymptotic efficiency. In using the decomposition based MODWT, the 

AR prediction was modified by Renaud et al. (2003)  to the AR Multiscale, that is:  







 
 

1

1
)1(2,,1

1 1
)1(2,,1

ˆˆˆ
j

J

j

j

A

k
ktJkJ

J

j

A

k
ktjkjt vawaX ,                            (8) 

where j  is number of levels ( Jj ...,,2,1 ), jA  is order of MAR model ( jAk ...,,2,1 ),  tjw ,  is 

value of wavelet coeffisients from the Haar wavelet, tjv ,  is value of scale coeffisients from the 

Haar wavelet, and  kja ,
ˆ  is value of scale MAR coeffisients.  

Let t=36, J=2 and jA =2 )2,1( k , MAR(2) model base upon Equation (8) is 
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or it can be written in matrix form as in the following Equation (10): 
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Matrix equation in Equation (10) can also be written in form 

Aαs  ,                                                             (11) 

where s  is a vector of ( 3621 ,...,, XXX ) data, A  is an matrix that contains the wavelet and scale 

coeffisients and becomes the input in MAR model, and α  is a vector of ),...,( 2,32,11,1 aaa  

parameters. To estimate parameters in α  vector, it is used Normal Equation, i.e. sAAαA ''   

which follows Least Squares Principle. So that, it will be obtained  

sAAAα ')'(ˆ 1 .                                                     (12) 

Renaud et al. (2003) show that MAR Model in Equation (9) is a model that can be used to 

forecasting stationary time series data. 

 

 
Figure 1.  Illustration from the wavelet modeling process for J=4 and jA =2. 

 

An input process from the wavelet modeling is proposed by Renaud et al. (2003). To make it 

clear, which chosen input in forecast procedure for ( 1t )
th

 data in the wavelet modeling is 

described in Figure 1. The figure represents general form of the wavelet modeling with level J=4 

and order jA =2. Figure 1 show that if it will be made forecasting for 18
th

 data by using the 

wavelet modeling for the 2
nd

 order, i.e. MAR(2), then input variable for the MAR(2) is the 

wavelet coeffisients in the 1
st  

level at t=17 and t=15, in the 2
nd

 level  at t=17 and t=13, in the 3
th

 

level at t=17 and t=9, in the 4
th

 level at t=17 and t=1; and the smooth coeffisients in the 4
th

 level 

at t=17 and t=1. Therefore, it can be concluded that the 2
nd

 input in each level is jt 2 . 
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3. RESEARCH METHODOLOGY 

    
The purpose of this research is to provide empirical evidence on the comparative study of many 
MAR models for forecasting trend and seasonal time series. To determine the best lags of scale 
and wavelet coefficients as predictors in MAR model, we investigate: 

“how many and which wavelet coefficients will be used at each scale?”  

We conduct empirical study with real data, the International Airline Passenger Numbers data 

in January 1949 - in December 1960, to address this question. This real data has been analyzed 

by many researchers, see for example Nam and Schaefer (1995), Hill et al. (1996), Faraway and 

Chatfield (1998), Suhartono et al. (2005). This data also has become one of two data to be 

competed in Neural Network Forecasting Competition on June 2005 (see www.neural-

forecasting.com). The data contain 144 month observations. The first 120 data observations 

(called in sample or training data) are used for model selection and parameter estimation and the 

last 24 points (called out sample or testing data) are reserved as the test for forecasting evaluation 

and comparison. The time series of these data has an upward trend together with seasonal 

variations.  

Training data is transformed become stationary seasonal data using Trend Analysis. 

Detrended data is decomposed based on MODWT with level J =4 and some filters from wavelet 

families, that is Haar, D4, C6 and LA8. MODWT result is four wavelet coefficients and four 

scale coefficients which each coefficient has the same size with training data. To build MAR 

model in this level is needed the four wavelet coefficients and the fourth level of scale 

coefficient. 

To take choice the lags of scale and wavelet coefficients as predictors in MAR model, four 

methods are applied for each filter. The first 2 methods, selection of predictors in MAR model 

based on the lags of scale and wavelet coefficients that proposed by Renaud et al (2003) and 

applied on first and second order from MAR model. The last 2 methods, selection of predictors 

in MAR model based on the lags of scale and wavelet coefficients that proposed by Renaud et al 

(2003) and seasonal lags of scale and wavelet coefficients. The last 2 methods are also applied 

on first and second order from MAR model. 

Stepwise method is applied to determine the best lags of scale and wavelet coefficients as 

predictors in MAR model. The stepwise Directed Search can select automatically the subset with 

the smallest Mallows’ statistic (Broersen, 1986). Based on the best lags of scale and wavelet 

coefficients as predictors in MAR model, is determined forecast value for the training data and is 

counted errors value. The MAR model that Normality and White-noise assumption satisfied is 

chosen and is calculated mean square error value (MSE).  

To forecast testing data is done to 24-step ahead forecasting based on the Trend model and 

the MAR model. MSE of testing data is calculated. The MAR model that has the smallest MSE 

of testing data is the best model. 

 

4. EMPIRICAL RESULTS 

 

Table 1 summarizes the result of the comparison MAR models based on lags input selection and 

report performance measures across training data and evaluation of model fit for residual from 

the International Airline Passenger Numbers data. The seasonal lags addition into the Renaud et 

al method reduces the MSE values in training data just on filter Haar, especially on MAR(1) 

model with lag 12 and lag 24 addition; MAR(2) model with lag 12 addition. The residuals that 

http://www.neural-forecasting.com/
http://www.neural-forecasting.com/
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satisfy both White-noise and Normality assumptions come from the combination MAR(1) model 

with lag 12, MAR(1) model with lag 12 and lag 24 addition and MAR(2) model with lag 12 

addition. There is no residual that satisfies White-noise and Normality assumption for filter D4, 

C6 or LA8.  

 

Table 1. The result of the comparison MAR models 

(1), (2), (3) and (4) satisfy Normality and White-noise assumption 

 

 

The results of the best model selection and report performance measures across training and 

testing samples for the International Airline Passenger Numbers data are summarized in Table 2. 

Numbers greater than one on column ratio indicates poorer forecast performance compare to the 

ARIMA models, and better for numbers less than one. We can clearly see on the ratio of testing 

samples that model (1), (2), (3) and (4) do not yield MSE less than ARIMA. 

  

Filter  Model Lags  Input Selection 
MSE in-

sample 

Evaluation of model fit for residual 

Normality White-noise 

Haar  

MAR(1) 

Renaud, et al.  method 411.084 Yes No 

Renaud, et al.  method + lag 12
(1) 

110.733 Yes Yes 

Renaud, et al.  method + lag 12 + lag 

24
(2), (3)

 

78.956 Yes Yes 

83.2022 Yes Yes 

MAR(2) 

Renaud, et al.  method 309.247 No No 

Renaud, et al.  method +  lag 12
(4) 

84.623 Yes Yes 

D4 

MAR(1) 

Renaud, et al.  method 802.905 No No 

Renaud, et al.  method +  lag 12 468.992 Yes No 

MAR(2) 

Renaud, et al.  method 189.304 No No 

Renaud, et al.  method +  lag 12 170.853 Yes No  

C6 

MAR(1) 

Renaud, et al.  method 827.956 Yes No 

Renaud, et al.  method +  lag 12+lag 24 413.109 Yes No 

MAR(2) 

Renaud, et al.  method 176.261 Yes No 

Renaud, et al.  method +  lag 12 198.721 Yes No 

LA8 

MAR(1) 

Renaud, et al.  method 613.794 No No 

Renaud, et al.  method +  lag 24 249.355 Yes No 

MAR(2) 

Renaud, et al.  method 325.657 Yes No 

Renaud, et al.  method +  lag 12+lag 24 238.033 Yes No 
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Table 2. The result of the comparison between ARIMA and MAR models that Normality 

and White-noise assumption satisfied. 

 

Model In-sample (training data) Out-sample (testing data) 

 MSE 
Ratio to 

ARIMA 
MSE Ratio to ARIMA 

ARIMA 88.862 1.0000 1527.03 1.0000 

Model (1) 110.733 1.2461 1699.489 1.1129 

Model (2) 78.956 0.8885 1570.675 1.0286 

Model (3) 83.202 0.9363 1688.072 1.1055 

Model (4) 84.653 0.9526 1619.316 1.0605 

Model (5)
* 

78.072 0.8786 1524.387 0.9983 

* 
The best model both in training data and in testing data. 

 

 

Based on model (2) is formed MAR model with near-seasonal lags addition. Modified model (2), 

called model (5) reduce the MSE values in testing data, that is 3.03% from model (2) or 0.17% 

from ARIMA model.  

 

5. CONCLUSION 

 

Based on the results we can conclude that the seasonal lags addition in Renaud et al method can 

be applied for forecasting seasonal time series (no trend).  Filter D4, C6, LA8 are not appropriate 

to be used in MAR modeling. The results agree with reason of Renaud et al (2003). 
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ABSTRACT 

 

The ability to detect disease outbreaks early is important in order to minimize morbidity and 

mortality through timely implementation of disease prevention and control measures. Many 

nationals, states, and local health departments are launching disease surveillance systems without 

statistical testing. Spatial scan statistic is a statistical tool to detect location of clusters (outbreak) 

of interest. This paper shows how scan statistic method detects diseases clusters. The 

applications are on detections of contiguous diseases (HIV/AIDS, Tuberculosis and Malaria) 

hotspot in 2001 - 2006. SaTScan software was used for the computation. As the result, for AIDS 

cases in Indonesia, there was a moving hotspot area of the mortality number from 2002 to 2006. 

In 2002, AIDS mortality hotspot is around east part, but in 2006, it was around the central part of 

Indonesia. The spreading of Tuberculosis in Indonesia was around east and central part of the 

country in 2001, whereas, in 2002 a reduction of the hotspot was in the central part. For malaria 

cases, the cluster regions of diseases cases were found, that the cluster regions of high malaria 

cases tend to decrease from year to year. The highest was in the east and central part of the 

country in 2001 and 2002.  

 

 

Keywords: Spatial scan statistics, HIV- AIDS, tuberculosis, malaria, hotspot, SatScan  

 

 

1. INTRODUCTION 

 

Health officials are often asked to evaluate local disease clusters alarms. After the case definition 

is established, an early question is whether the cluster has occurred by chance or whether the 

outbreak is so great that it is probably due to some common elevated risk factor of limited 

geographical and/or temporal extension. Because of these needs, scan statistics and/or space-time 

scan statistics have become popular methods in disease surveillance for the detection of disease 

clusters. The standard approach is to look at a single disease, such as leukemia incidence, breast 

cancer mortality, HIV/AIDS mortality, bird flu, tuberculosis, and dengue fever. The aim of this 

paper is to identify the highest response areas of some contiguous diseases (HIV/AIDS, 

Tuberculosis and Malaria) occurred in Indonesia and to test whether those areas are significant 

statistically.  

Kulldroff  (2006), created  the SaTScan software as a tool for data change detection within 

space and /or time. The properties of the data are the scan area geographic, probability 

distribution of the response under the null hypothesis, and the significance of the statistic test is 

evaluated with Monte Carlo simulation; Kulldorff (2006).  

mailto:yekti@ui.ac.id
mailto:2asaefuddin@gmail.com
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2. METHODS 

 

2.1 Data 

 

In the year 2005 the population of Indonesia was about 240 millions. As an archipelago, 

Indonesia consists of thousands small islands and five big islands; they are  Sumatera, 

Kalimantan, Java, Sulawesi, and Papua. There are 33 provinces, 440 districts, and about 5900 

sub-districts spread on the islands. Two seasons in Indonesia are the dry season and wet season 

with a transition period in September. 

 

2.1.1 HIV/AIDS 

 
HIV/AIDS disease is continuing to increase in number, and spreading through the regions. 
Recently, according to the Jakarta Post news paper, the number of AIDS cases was found in 
Yogyakarta and more number in Papua; Kulldorff (2007). Through the scan statistics calculation, 
we analyzed the cluster regions of the AIDS mortality cases in year 2002, which had the 
mortality number 379 of 1016 cases; and in year 2006, which had mortality number 1651 of 
6987 cases; Depkes (2006). This application compared the two results, year 2002 and 2006 data. 
Based on the number of HIV/AIDS cases, assumed that the mortality number as Bernoulli 
distribution with possibilities of die or not die. The equation (2) is used as the model of the 
statistical test.  

 

2.1.2 Ttuberculosis 

 

Although tuberculosis had occurred in human since thousands years ago, this disease is still a big 

problem in the world and difficult to be combated. Nowadays, many people are still suffering of 

this disease. Estimated, one person contagious this disease in every second. According to the 

World Health Organization (WHO) data, more than 670,000 cases occurred each year with 

deadly number is 175,000 persons; Depkes (2007). Hotspot of TB cases in Indonesia was 

analyzed using Scan Statistics Method. The data was the number of TB cases of every province 

in 2001, 2002, 2004, and 2005.  

 

2.1.3 Malaria 

 

Malaria is presently endemic in a broad band around the equator, in areas of the Americas, many 

parts of Asia, and much more of Africa. The geographic distribution of malaria within large 

regions is complex, and malaria-free areas are often found close to each other. The global 

endemic levels of malaria have not been mapped since the 1960s. However, the Welcome Trust, 

UK, has funded the Malaria Atlas Project to rectify this, providing a more contemporary and 

robust means with which to assess current and future malaria disease burden; Oemijati  (1992).   

In Indonesia, malaria has spread to all provincial areas. Malaria often emerges as an outbreak 

with relatively high morbidity and mortality rates. As an archipelago nation, malaria condition in 

Indonesia is various for each island. Java and Bali Islands which populated of 70% from total 

Indonesian population is categorized as a hypo-endemic area. While in other islands that sparsely 

outer of Java and Bali consist of Sumatera, Kalimantan, Sulawesi, Nusa Tenggara, Maluku and 

Papua, malaria is found at much higher levels. These areas are categorized from hypo- to hyper 

endemic.  



1089 

 

2.2 Scan Statistics 

 

2.2.1 Purely Spatial Scan Statistics 

 

Purely spatial scan statistics concern in two-dimensional space. Three basic properties of the 

scan statistic are the geometry of the area being scanned, the probability distribution generating 

events under the null hypothesis, and the shapes and sizes of the scanning window. Depending 

on the application, different models will be chosen, and depending on the model, the test 

statistics may be evaluated either through explicit mathematical derivations and approximations 

or through Monte Carlo sampling. In the latter case, random data sets are generated under the 

null hypothesis, and the scan statistics is calculated in each case, comparing the values from the 

real and random data sets to obtain a hypothesis test; Kulldorff (1999).   
 
Bernoulli Model. Under the Bernoulli model, the null hypothesis is Ho : p = q , N(A) ~ Binomial 

((A), p) for all sets A.  And the alternative hypothesis is H1 : p > q, N(A) ~ Binomial ((A), p) 

for set A  Z, and N(A) ~ Binomial ((A), q) for set A  Z’. N(A) is the number of cases in A. 
Z’ is hotspot areas. Probability density functions of an event is  
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If nZ is point (number of cases in zone Z), nG is the number of observation, and G is the study 

area, Likelihood for Bernoulli model is  
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             (2) 

The test statistic  of the likelihood ratio test can be written as  

,
ˆsup ( , , ) ( )

sup ( , , )

Z p q

p q o

L Z p q L Z

L Z p q L


 



           (3) 

L0 is likelihood under null Hypothesis; Kulldorff (1997).  

 

Poisson Model. Under the Poisson model, points are generated by an inhomogeneous Poisson 

process. There is exactly one zone Z  G such that N(A) ~ Poisson(p(AZ) + q(AZ
c
))  A. 

The null hypothesis is Ho : p = q , while the alternative hypothesis states that H1 : p > q , Z  Z. 

Under Ho, N(A) ~ Poisson (p(A))  A. Note that one of the parameters, Z disappears under the 

null hypothesis. The probability of nG number of points in the study area is 

 
( ) ( ( ) ( ))[ ( ) ( ( ) ( ))]
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                (4) 

The likelihood function for the Poisson model is 
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      (5) 

 

The test statistic  of the likelihood ratio test can now be written as        
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if there is at least one zone Z such that ( )

( ) ( ( ) ( ))

G ZZ
n nn

Z G Z  





, and =1 otherwise. I() is the indicator 

function. The ratio , is used as the test statistic, and its distribution is find through Monte  Carlo 

repetition as described below; Kulldorff (1997). 

In order to find the value of the test statistic, we need a way to calculate the likelihood ratio 

as it is maximized over the collection of zones in the alternative hypothesis. Once the value of 

the test statistic has been calculated, it is easy to do the inference. We cannot expect to find the 

distribution of the test statistic in closed analytical form. Instead we rely on Monte Carlo 

simulation. Because we know the underlying measure μ, we can obtain replications of the data 

set generated under the null hypothesis when we condition on the total number of points nG. 

With 9999 such replications, the test is significant at the 5 percent level if the value of the test 

statistic for real data set is among 500 highest values of the test statistic coming from the 

replications; Kulldorff (1997).  

In addition, the most likely cluster for the real data has the significantly test statistic at  = 

0.05, that is, its likelihood ratio is on 5% highest among the values of replicated data. The p-

value of the Monte Carlo hypothesis is defined as p-value = r /(1 + sim);  r is the ranking and 

sim is the number of repetitions of the data simulation under the null hypothesis; Kulldorff 

(2006). 

 

3. APPLICATIONS AND THE RESULTS 

 

The datasets; case and geographical datasets are appended to a master archive using SaTScan. 

The goal of data analysis is to detect the cluster region (outbreak) of some contiguous diseases. 

The performance of the purely spatial scan statistic evaluated HIV/AIDS mortality, Tuberculosis 

(TB) and Malaria data. TB and Malaria cases were assumed as Poisson distribution, whereas 

HIV/AIDS mortality was assumed as Bernoulli distribution with possibilities of die or not die as 

mentioned before. 

Figure 1 shows the atlases of the spatial scan statistics results for HIV/AIDS mortality cases 

through SatScan software; ESRI (1996 – 2000). In 2002, the regions of the Most Likely Cluster 

of aids mortality were Maluku, Central Sulawesi, Papua, North Sulawesi, South Sulawesi, East 

Nusatenggara, and East Kalimantan. This cluster was statistically significant with relative risk = 

1.305, Likelihood ratio (LLR) = 5.175177, and p-value= 0.020. Secondary clusters (Central Java 

and some parts of Sumatera areas) were not statistically significant. 

In 2006, the regions of the Most Likely Cluster of aids mortality were the central part of the 

country. The provinces were East Nusatenggara, West Nusatenggara, South Sulawesi, Southeast 

Sulawesi, Bali, West Sulawesi, Central Sulawesi, South Kalimantan, East Java, Gorontalo, 

Yogyakarta, Central Kalimantan, Maluku, North Sulawesi, East Kalimantan, Central Java, and 

North Maluku. This cluster was statistically significant with relative risk = 1.578, LLR = 50.587, 

and p-value= 0.001. The regions of the first secondary cluster were some parts of Sumatera. The 
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provinces were West Sumatera, Riau, and Riau Islands. This secondary cluster was statistically 

significant with relative risk = 2.024, LLR = 41.15658, and p-value= 0.001. 

 

 

 
Figure 1. Hotspot of Aids Mortality cases, 2002 and 2006 

 

 

 
Figure 2. Hotspot of TB Cases, 2001 and 2005 

 

 

Figure 2 shows the hotspot of Tuberculosis cases, 2001 and 2005. The cases was high in 

Kalimantan, Sulawesi, Maluku, Nusa Tenggara Islands, and Papua in year 2001. In 2002 these 

areas were still high, except West and Central Kalimantan (not showed). Followed by Jakarta 

and West Java, also had significantly high TB cases. Furthermore, in 2004, North Sulawesi, 

North Maluku, South East Sulawesi, Gorontalo, South Sulawesi, West Sulawesi, and South 

Kalimantan, the number of TB cases was high. There were 17,288 cases in those areas. 

Furthermore, in 2005, the highest cases were in Maluku, Sulawesi, and Papua. As a result, 

hotspots of TB cases were relatively moving just around East and central part of Indonesia and 

some areas in Sumatera. In addition, hotspot of TB cases also high in North Sumatra in 2004 and 

2005, whereas it was not significant in 2001 and 2002. In 2005, the most likely cluster of TB 

consists provinces in the east part of Indonesia, they were Maluku, North Maluku, the whole 

Sulawesi, and Papua. This cluster was statistically significant as a hotspot with the number of 

cases was 22755. The secondary clusters were North Sumatera with 13401 cases, followed by 

Central Kalimantan, South Kalimantan, West Kalimantan with 8544 cases; Jakarta, 7308 cases; 

West Nusa Tenggara, 3563 cases; and Bengkulu, 1271 cases. All these clusters were statistically 

significant as the hotspots of Tuberculosis case in Indonesia. Whereas, the estimation number of 

tuberculosis cases in Indonesia were 296,381 cases spread around Indonesia Islands. 

In 2001, hotspot areas of malaria were Kalimantan, Sulawesi, West Nusa Tenggara, East 

Nusa Tenggara, North Maluku, and Papua. In 2002, hotspot areas were still in the same areas, 
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except Central Kalimantan and West Kalimantan. In 2003 to 2004, hotspot area is held out in 

East Nusa Tenggara. In 2005, hotspots areas back to Gorontalo, Southeast Sulawesi, North 

Sulawesi, and South Sulawesi. 

 

 
Figure 3. Hotspot of Malaria Cases, 2001 and 2005 

 

 

There are different results about hotspot areas between the health department report  and scan 

statistics results. The results were based on the reported data. It is believed that many cases are 

not reported to Health Department. It could be seen, as an example, in 2004 and 2005 malaria 

cases were high because the government received global fund to investigate malaria cases. It was 

possible that before 2004 the cases also high but they were not reported. 

 

4.  COMMENTS AND CONCLUSIONS 

 

According to the result of calculation for HIV/AIDS mortality in Indonesia, there was a moving 

hotspot area of the mortality number from year 2002 to 2006. In 2002, AIDS mortality hotspot is 

around the east part of Indonesia, but in 2006, it was around the central part, include Central Java 

and Yogyakarta. The news about rising AIDS cases in Yogyakarta in 2007 is relevant with the 

analysis results. The second highest was in the Central part of Sumatera. 

 

In 2001, the hotspot regions of TB cases were Papua, Sulawesi, and Kalimantan. Furthermore, in 

2005, the highest TB cases were in Maluku, Sulawesi, and Papua. As a result, hotspots of TB 

cases were relatively moving just around east and central part of Indonesia and some areas in 

Sumatera. In addition, hotspot of TB cases also high in North Sumatra in 2004 and 2005, 

whereas it was not significant in 2001 and 2002.  

 

Hotspot area of malaria cases was narrower from 2001 to 2005. In 2001, the hotspot areas of 

malaria cases were Kalimantan, Sulawesi, North Maluku, and Papua, while in 2005 hotspot areas 

were North Sulawesi, Gorontalo, Southeast Sulawesi, and South Sulawesi. The malaria cases 

was move from the east to some areas of Sumatera, Kalimantan, and Sulawesi. 

 

As a conclussion, contiguos diseases tended to move from the east part to the central part in 

period 2001 to 2006  On the basis of study, prevention strategies are recommended that focus on 

these hotspot areas. The present study analyzed the association between human population and 

diseases cases. Gathering and including vector population data (including species, population 
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density, distribution, and infection prevalence rate) and environmental variables in the risk 

analysis of a disease in these areas provide a more comprehensive view of the disease risk. 
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Abstract

A shrinkage estimation method for cumulative logit models is developed. The proposed method is based
on shrinking the responses for each category towards the underlying probabilities. The method handles not
only the problem of separation in the cumulative logit models but estimates also exist when the number
of covariates is larger relative to the sample size. The estimates exist even when MLE does not exist.
The computation of the parameter estimates for cumulative logit model with the proposed method is very
simple and can easily be done with all commonly used statistical packages supporting fitting procedures
using weights. Estimates are compared with the MLE in a simulation study and application.

KEY WORDS:KEY WORDS:KEY WORDS: Logistic regression, Shrinkage estimation, Pseudo data, Cumulative logit

1 INTRODUCTION

Regression models with ordinal responses are usually fitted using the maximum likelihood approach. The
usual ML estimates face the problems and may not exist when the model under consideration has larger
number of covariates relative to the sample size. The method of maximum likelihood estimation is also
sensitive to outliers. The penalization methods are the alternative in such situations which use the penal-
ized likelihood function for the estimation of parameters. Ridge regression, one of the oldest penalization
methods for linear models, was extended to GLM type models by Nyquist [5], although a definition of a
ridge estimator for the logistic regression model, which is a particular case of generalized linear models was
suggested by Schaefer et al. [8] and Schaefer [7]. Segerstedt [9] discussed a generalization of ridge regres-
sion for ML estimation in GLM. Although many alternative penalization/shrinkage methods are proposed
for univariate GLMs in the literature but according to knowledge of the authors, not so much literature is
available for multicategory responses. Zhu and Hastie [11] use ridge type penalization, Krishnapuram et al.
[3] consider multinomial logistic regression with lasso type estimates and Friedman et al. [2] use the elastic
net with L1 and L2 penalties as its special cases. Tutz and Leitenstorfer [10] considered a shrinkage type

Proceedings�of�the�Tenth�Islamic�Countries�Conference�on�Statistical�Sciences�(ICCS-X),�Volume�II,
The�Islamic�Countries�Society�of�Statistical�Sciences,�Lahore:�Pakistan,�(2010):�1094–1108.
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estimator for binary regression that has connection with the estimators of Rousseeuw and Christmann [6]
which are based on the responses which are closely related but not equal to the unobservable true responses.
Rousseeuw and Christmann [6] estimates are robust against separation and always exist.

Our technique for shrinking the parameter estimates is not using any penalty term as used in ridge regres-
sion or lasso but we are shrinking the discrete responses appearing as 0 or 1 in the same fashion followed by
Tutz and Leitenstorfer [10] for binary responses. These discrete values are the exaggeration of the true un-
observable probabilities, and we are shrinking these values towards the underlying probabilities by replacing
or one can say that by transforming 0/1 values to some corresponding higer/smaller values (probabilities).
To do this we are making use of some pseudo data sets. We makeq = k−1 pseudo observations for each
response in the original data. For example, for a three-categories (ordered) response variable, the categories
are labeled as 1,2 and 3. Let for a particular response the category 1 appears, then for this response there
will be two pseudo responses with categories labels 3 and 2 (with clockwise rotation of 1,2,3) or 2 and 3
(with anti-clockwise rotation of 1,2,3) respectively. So against theith response with categoryj, rest ofk−1
categories get the representation ink−1 pseudo responses respectively with identical value of the covariate
xi and as a result we are then downgradingy. j = 1 using its counterpart categories by assigning different
weights to the original and corresponding pseudo responses. In this case rather than using the log-likelihood
for n observations we are working with a weighted log-likelihood forkn observations. This approach is not
only simple and easy to implement but also robust in terms of existence of estimates and provides significant
improvement over usual MLE. Any statistical software used for fitting the logit models with weights for
ordinal responses can be used for implementing this technique.
In section 2 the basic idea of shrinking estimation is described. Section 3 descibes the way to decide about
the weights for the original and pseudo observations. The performance of shrinkage methods is investigated
and compared with the usual MLE in section 4. In section 5 the estimates are computed for a real data set.
Section 6 completes the discussion with some concluding remarks.

2 SHRINKAGE ESTIMATION WITH DATA
TRANSFORMATION

For ordinal responses several statistical models such as cumulative logit model, continuation-ratio model,
constrained and unconstrained partial proportional odds model, adjacent-category logit model, polytomous
logit model and stereotype logistic model, can be used. Ananth and Kleinbaum [1] describe these models
and interpretation of the model parameters. Cumulative logit model (also called proportional odds model by
[4]) is most commonly used model and is followed in this text. The shrinkage technique described here can
be applied in the same way to the other models for ordinal responses. For the cumulative logit model, let for
a given vectorx of explanatory variables, there is an observable variableY ∈ {1, . . . ,k} connected with an
unobservable latent variableZ as

Y = j ⇔ θ j−1 < Z < θ j , j = 1, . . . ,k

where−∞ = θ0 < θ1 < .. . < θk = ∞. This indicates thatY is a categorized version ofZ determined by
θ1, . . . ,θk−1. The cumulative logistic model has the form

P(Y ≤ j) = P(Z≤ θ j) =
exp(θ j −βββTx)

1+exp(θ j −βββTx)
j = 1, . . . ,q = k−1. (1)
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The alternative form can be shown as

log

[
φ j(x)

1−φ j(x)

]
= θ j −βββTx j = 1, . . . ,k−1, (2)

whereφ j(x) = P(Y ≤ j|x) is the cumulative probability up to and including categoryj, when the covariate
vector isx. In case of cumulative logistic model one gets the link function as

g j(πi1, . . . ,πiq) = log

[
log

(
φr

1−φr

)
− log

(
φr−1

1−φr−1

)]
(3)

(2) is known as the proportional-odds model, where each cumulative logit has its own interceptθ j ( j =
1, . . . ,q), and{θ j} are increasing inj. The negative sign in (2) ensures that the probability is increasing
for large values ofβββTx with increasingj. In (2) θθθ andβββ are unknown andθθθ must satisfyθ1 ≤ . . . ≤ θk−1

to ensure that the probabilities are non-negative. In case ofk responses (ordered) andp covariates, for the
estimation of parameters, let the cumulative logit model has the form

logit(φi j ) = X iβββ∗

whereX i (fixed coefficients), are the components ofnk× p∗ design matrixX andβββ∗ is the vector of length
p∗ = p+k−1 for the model (2) with componentsβββ∗ = (θ1, . . . ,θq,β1, . . . ,βp). The design matrixX is given
as

X =


X1

X2
...

Xn


with X i , aq× p∗ matrix given by

X i = [ I k−1 : 1xi ] =


1 xT

i
1 0

...
...

1 0


The original data set is increased byk times by generatingq pseudo data sets of the original data. For
the jth category against theith response, each of the rest ofq categories are given representation (with
different weights) in theith row of each of the shadow data with identical value of the design point. Since
we havek categories numbered 1,2, . . . ,k and rotating these numbers clock wise (or anti-clock-wise) we
getq arrangements as(k,1, . . . ,k−1), (k−1,k,1, . . . ,k−2), . . . , (2,3, . . . ,k,1). For the jth category in the
original data, alternative category for theith row of each of the shadow data sets can be chosen from these
q arrangements respectively. For example, in the case of three categories, if we have a sample of size three
with outcome category labels as(1,2,3), then it hask−1= 2 pseudo data sets with outcome category labels
as(3,1,2) and(2,3,1) which can be then written in the form of a response matrix of dummy variables. In
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this example

pseudo data sets of the original response matrix

1 0 0
0 1 0
0 0 1

are

0 0 1
1 0 0
0 1 0

and

0 1 0
0 0 1
1 0 0

 .

with last column as redundant. Each pseudo observation of theith response has identical values for the
design pointxi for i = 1,2, . . . ,n. As a result, the size of our data is increased fromn to kn. If we assign
δs (s = 1, . . . ,q) weights to thesth pseudo data andδ0 = 1−∑k−1

s=1 δs weights to the original data where
δs∈ [0, 1

k ]. In this case the weighted log likelihood function forknobservations is given by

lw(βββ) =
kn

∑
i=1

wi l i(βββ), (4)

where

l i(βββ) =
k

∑
j=1

logπ j(xi)yi j =
k

∑
j=1

log
[
φ j(xi)−φ j−1(xi)

]yi j

and

wi =
{

δi0 i ≤ n
δis i > n.

For δis = 0, we have usual (unweighted) likelihood function for cumulative logit model. Asδis get larger
values, the pseudo data will get more weights and original responses get low weights.
If the response variable has three (ordered) categories labeled 1,2 and 3. There will be two pseudo data sets
getting weightsδi1 andδi2 respectively and the weights for original data areδi0 = 1−∑2

s=1 δis. The weighted
log-likelihood function in this case is given by

lw(βββ) =
n

∑
i=1

[
δi0

{
yi1log(πi1)+yi2log(πi2)+yi3log(πi3)

}
+δi1

{
yi3log(πi1)+yi1log(πi2)+yi2log(πi3)

}
+δi2

{
yi2log(πi1)+yi3log(πi2)+yi1log(πi3)

}]

=
n

∑
i=1

[{
yi1 +(yi3−yi1)δi1 +(yi2−yi1)δi2

}
log(πi1)

+
{

yi2 +(yi1−yi2)δi1 +(yi3−yi2)δi2

}
log(πi2)

+
{

yi3 +(yi2−yi3)δi1 +(yi1−yi3)δi2

}
log(πi3)

]

=
n

∑
i=1

ỹi1log(πi1)+ ỹi2log(πi2)+ ỹi3log(πi3) =
n

∑
i=1

3

∑
j=1

ỹi j log(πi j )
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This expression forlw(βββ) indicates that use of pseudo data sets with different weights lead to the transformed
responses ˜yi j and weighted log-likelihood with pseudo data simplifies to an un-weighted log-likelihood of
transformed responses ˜yi j with probabilitesπi j . The weights here are being used to process the exaggerated
values of the original responses of the form 1 or 0 to transform them in a more realistic smaller/higher
values respectively. This expression with three response categories can easily be extended for thek response
categories and is given as

lw(βββ) =
n

∑
i=1

k

∑
j=1

ỹi j log(πi j ) (5)

with the ith transformed observation for thejth category

ỹi j =



yi1 +
k

∑
r=2

(yir −yi1)δi,k−( j−1) if j = 1,

yik +
k−1

∑
r=1

(yir −yik)δi,( j−r) if j = k,

yi j +
j−1

∑
r=1

(yir −yi j )δi,k−(r+1) +
k

∑
r= j+1

(yir −yi j )δi,k−(r− j) otherwise.

One can proceed with the log-likelihood function given in (5) rather than working with weighted log-
likelihood given in (4), but in this text we follow the weighted version of log-likelihood forkn observations
using the pseudo data sets. The score function for the weighted log-likelihood function is given by

sw(βββ∗) =
∂lw(βββ∗)

∂βββ∗
=

kn

∑
i=1

swi(βββ∗),

with the components
swi(βββ∗) = XT

i diag(wi)Di(βββ∗)ΣΣΣ−1
i (βββ∗)[yi −h(ηηηi)],

wherewi are the weights,Di(βββ∗) = ∂h(ηηηi)
∂ηηη is the derivative ofh(ηηη) evaluated atηηηi = X iβββ∗ andΣΣΣi(βββ∗) =

cov(yi) is the covariance matrix ofith observation ofy given parameter vectorβββ∗. Alternatively

swi(βββ∗) = XT
i diag(wi)W i(βββ∗)

∂g(µµµi)
∂µµµT [yi −h(ηηηi)]

with

W i(βββ∗) = Di(βββ∗)ΣΣΣ−1
i DT

i (βββ∗) =
{

∂g(µµµi)
∂µµµT ΣΣΣi(βββ)

∂g(µµµi)
∂µµµ

}−1
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In matrix notation

sw(βββ∗) =
n

∑
i=1

XT
i diag(wi)Di(βββ∗)ΣΣΣ−1

i (βββ∗)[yi −h(ηηηi)]

=
n

∑
i=1

XT
i Di(βββ∗)ΣΣΣ−1

i (βββ∗)[ỹi −h(ηηηi)] (6)

= XTD(βββ∗)ΣΣΣ−1(βββ∗)[ỹ−h(ηηη)]

wherey andh(ηηη) are given by

yT = (yT
1 , . . . ,yT

n ), h(ηηη) = (h(ηηη1), . . . ,h(ηηηn))T .

The matrices have block diagonal form

ΣΣΣ(βββ∗) = diag(ΣΣΣi(βββ∗)), W(βββ∗) = diag(W i(βββ∗)), D(βββ∗) = diag(Di(βββ∗)),

The simple form of the score equations is given by

∂lw(βββ∗)
∂βββ∗

= ∑
i j

xi j wi(yi j −h(ηi j ))

= ∑
i j

xi j (ỹi j −h(ηi j )) = 0 (7)

or in matrix notation it can be written as

XT
nk×p∗diag(wi)[ynk×1−h(ηηη)nk×1] = XT [ỹ−h(ηηη)] = 0

Score function in (7) uses shrinked responses corresponding to the original responsesy. j (closing to1
k ) such

that for y. j = 1, ỹ. j assumes the value 1−∑q
s=1 δs, which is less than 1, andy. j = 1

k if we use the same
weightsδs = 1

k (s= 1, . . . ,q), in which case (7) leads to the solutionβββ∗ = 0.
The use of weighted score function by assigning different weights to pseudo data sets and the original data,
ensures the existence of estimates, also in the situations where the usual MLE fails to exist e.g., if we have
large number of covariates relative to the sample size or if there is some problem of separation in the data.
The estimation with weighted responses is very simple and any statistical software that allows the fitting of
cumulative logit models with weights can be used to obtain the estimates.

3 WEIGHTS FOR SHRINKAGE TECHNIQUE (WMLE)

The basic idea is that instead of using the exaggerated observed responses in the form of dummy variables as
1 or 0, a weighted smoothed version of these responses should be used. To downgrade the responsesyi j = 1,
the weights can be chosen in the interval[0, 1

k ]. In this section for the cumulative logit models with intercept
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we exploit the property of MLE
1
n

n

∑
i=1

π̂i j = ȳ. j , j = 1,2, . . . ,k (8)

and decide about the weights based on the fulfillment of this property. Here ¯y. j is the mean of responses
corresponding to thejth category. Different weights should be assigned to each ofy j ( j = 1, . . . ,k) to hold
the property (8). From (7) it is clear that there will bek−1 score equations corresponding to the intercept
terms and are of the form

n

∑
i=1

ỹi. =
n

∑
i=1

π̂̂π̂πi. (9)

Let δ̃ j be the weight associated withyi j j = 1, . . . ,k, then from (9) under the MLE property given in (8) we
obtain(k−1) equations of the form

k

∑
j=1
j 6=r

ȳ. j δ̃ j − (k−1)ȳ.r δ̃r = 0 r = 1, . . . ,k−1. (10)

solving this system ofk−1 equations for̃δ’s, we get

δ̃ j =
ȳ.k

ȳ. j
δ̃k, j = 1, . . . ,k−1. (11)

Here if δ̃k = ȳ. j we then havẽδ j = ȳ.k ∀ j, i.e., in this situation each responsey. j = 1 is shrinking towards
ȳ.k, the mean of the responses for thekth category. The optimum value of the weightδ̃k can be searched in
the interval[0, ȳ. j ]. But in case if all weights are equal to1k , the solution for the estimates will bêβββw = 0. It is
intuitive to search the optimum value of the weightδ̃k in interval[0, 1

k ] whenȳ. j > 1
k . Since forδ̃k = ȳ. j each

of the response ¯y. j = 1 ( j = 1, . . . ,k−1), shrinks towards ¯y.k, it is sensible to shrink the responsey.k = 1
towards the mean of rest ofk− 1 responses i.e., shrinkingy.k = 1 towards 1

k−1 ∑k−1
j=1 ȳ. j . The weighting

scheme for the original data and thel th (l = 1, . . . ,k−1) pseudo data set on the basis of (11) is given by

αi =

 1−
k−1

∑
l=1

αil i ≤ n

αil i = 1, . . . ,n ∀l

(12)

where

αil =


(

ȳ.k
ȳ. j

)
δ j for y j∈{1,...,k−1} = 1

1
k−1

k−1

∑
j=1

δ j for yk = 1

for i = 1, . . . ,n andl = 1, . . . ,k−1. The optimum values of the tuning parametersδ j can be decided on the
basis of cross-validation criteria. The statistical distances used in this text for the cross-validation purpose
are:
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averaged Kullback-Leibler discrepancy

LKL =
n

∑
i=1

k

∑
j=1

πi j log

(
πi j

π̂i j

)
with a convention that 0.log(0) = 0, and the averaged squared error

ASE=
1
nk

n

∑
i=1

k

∑
j=1

(πi j − π̂i j )2,

In this text leave-one-out cross-validation is used i.e., for theith observation the fit is computed using all the
data except theith observation. However to save the time and computational burden one can use thek-fold
cross-validation for searching the optimum values of the tuning parameters.

4 SIMULATION STUDY

In a simulation study, we generated Gaussian data withn observations andp covariates. We used differ-
ent number of combinations ofn (n = 30,50 and 100) and p (p = 2,5,10,15 and 20). The values of the
parameters used areβ j = (−1) jexp(−2( j−1)/20) for j = 1, . . . , p and for the intercept termsβ01 = −0.3
andβ02 = 0.8. The covariates are drawn fromN(0,1). In each combination ofn and p, S= 200 data sets
are generated. For the computation of usual MLE and the shrinkage estimates, the functionpolr of the R
packageMASS is used. Only those data sets are considered in the study for which the usual MLE exists. The
combination ofn = 30 andp = 20 is the exception where the ML estimates are not existing and therefore
in Table 1 the results for MLE are not available for this combination. In Table 1, shrinkage estimates with
weights given in (12), are compared with the usual MLE in terms of MSE(β̂ββ) and MSE(̂πππ). For shrinkage
estimates, optimal values of the tuning parameters are chosen by leave-one-out cross validation based on
error measures described in section 3 and the corresponding results are denoted by CV(KL) and CV(SE) for
Kullback-Leibler and squared error loss respectively. MSE(β̂ββ) and MSE(̂πππ) are computed as:

MSE(π̂ππ) = 1
S∑sMSEs(π̂ππ) with MSEs(π̂ππ) = 1

kn

n

∑
i=1

k

∑
r=1

(π̂ir −πir )2 for thesth sample

and

MSE(β̂ββ) = 1
S∑s||β̂ββs−βββ||2

whereπ̂ππ is a vector of lengthkn andβ̂ββ andβββ are of lengthp+ k−1. If MSEs is the MSE ofπ̂ (or β̂ββ) for
shrinkage method and MSEML

s is the corresponding MSE for the maximum likelihood estimate, then the
ratio MSEs/MSEML

s for thesth simulation will provide a measure of improvement of shrinkage method over
MLE. The distribution of the ratios MSEs/MSEML

s is skewed and therefore the logarithms of these ratios
are considered. In Table 1 along with the MSEs, the means of log(MSEs/MSEML

s ) denoted bylRML(π̂) and
lRML(β̂ββ) are considered for comparing the shrinkage estimates with the usual MLE. The negative values of
these log-ratios refer to an improvement of shrinkage estimates over the usual ML estiamtes. Although the
main focus was on the development of estimation method that is more robust than usual MLE in terms of
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Figure 1: Illustration of the simulation study: Box plots of log(MSE(β̂ββ)) (left column) and MSE(π̂ππ) (right
column) forn = 30.

existence of parameter estimates especially in case of larger number of covariates with small samples or
for no overlapping observations in the data, we also considered a simple case of only two covariates even
with a large sample size to observe the behaivour of shrinkage estimates. We were expecting the MLE
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with favourable asymptotic properties to perform better than shrinkage estimates with large samples in low
dimension but results in Table 1 show better performance of our estimates in every situation not only with
respect to the parameter estimates but also the fit. For the casep = 20 andn = 30, MLE is not existing but
the shrinkage estimates do exist. In case ofp = 15 andn = 30 our approach is showing some weakness in
terms ofπ̂ππ but still giving excellent performance in terms ofβ̂ββ. The shrinkage estimates and the ML estimates
are compared with respect to MSE(β̂ββ) and MSE(π̂ππ) in terms of box plots in Fig.1 for the most interesting
case of small samples, i.e.,n = 30. The bullets (solid circles) within the boxes are the mean of 200 values
for which the box plots are drawn. The shrinkage technique also showed good performance with increasing
number of response categories in the simulation studies, the results of which are not shown here.

5 APPLICATION

In this section we are comparing our shrinkage estimates with the usual MLE using the "housing" data set
provided by the R libraryMASS. The response variable in this data set is "Sat"(Satisfaction of household-
ers with their present housing circumstances) with three ordered categories (1:Low(L), 2: Medium(M), 3:
High(H)). The covariates are "Infl" (Perceived degree of influence householders have on the management
of the property) with three categories ( Low(L), Medium(M) and High(H) ), "Type" (Type of rental accom-
modation) with four categories (Tower(Tw), Atrium(At), Apartment(Ap), Terrace(Tr)) and "Cont" (Contact
residents are afforded with other residents) with two levels ( Low(L) and High(H) ). The sample size of actual
data set isn= 1681. We draw a random sample of sizen= 50 from the actual data and proceed with this data
set of 50 responses. This data set can be accessed atwww.stat.uni-muenchen.de/∼zahid/housing.txt.

Table 2: Estimates and standard errors for "housing" data

Estimation Method Intercept 1 Intercept 2 Infl(M) Infl(H) Type(At) Type(Ap) Type(Tr) Cont(H)

MLE −0.5109 1.1088 −0.2794 −1.7398 −0.2687 0.1178 −0.1470 −0.3219
(0.7179) (0.7375) (0.6387) (0.8178) (0.7078) (0.7782) (0.9984) (0.6132)

WMLE, CV(KL) a −0.7729 1.0207 −0.0568 −0.3361 −0.0493 0.0169 −0.0216 −0.0685
(0.1937) (0.1956) (0.1691) (0.1839) (0.1881) (0.2073) (0.2281) (0.1464)

WMLE, CV(SE)b −0.7311 1.0204 −0.0739 −0.4419 −0.0648 0.0234 −0.0288 −0.0891
(0.2320) (0.2346) (0.2030) (0.2219) (0.2254) (0.2487) (0.2785) (0.1777)

a Results are based on optimum values of tuning parametersδδδT = (0.1322449,0.2789116).
b Results are based on optimum values of tuning parametersδδδT = (0.1224490,0.2517007).

Table 3: MSPE and Mean deviances

Estimation Method MSPE Mean Deviance

MLE 7.4997 13.0398

WMLE, CV(KL) 6.6132 10.9193

WMLE, CV(SE) 6.6321 10.9602

We fit the proportional odds model on this data under the assumption that proportional odds assumption is
fulfilled. The results for the parameter estimates and their standard errors (within brackets) for usual MLE
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and the shrinkage approach are presented in Table 2. An expression for computing the standard errors of
the parameter estimates for the shrinkage parameter estimates is derived in Appendix A. For shrinkage the
optimum values of tuning parametersδ’s used are decided on the basis of leave-one-out cross-validation. The
information in Table 2 is reflecting the improved estimates of standard errors of parameter estimates with
smaller values than those for ML estimates. The parameter estimates of shrinkage method are compared
with usual ML estimates on the basis of prediction error. For this purpose we use two approaches, one is
with the help of MSPE (mean squared prediction error) and second using the deviance function. We use
80% of 500 random splits of our data set with 50 observations as the training data set and rest of the 20%
as test data set. The parameter estimates are obtained by fitting the model with training data sets and these
estimates are used to get the fit and prediction error from the test data sets. The squared prediction error is
computed using the formula

SPEs =
1
kn

n

∑
i=1

k

∑
r=1

(π̂test
ir −ytest

ir )2,

wherey’s are the observed responses in the form of dummy variables 0 or 1. The MSPE for 500 random
permutations computed as

MSPE=
1

500

500

∑
s=1

SPEs.

and the deviances are calculated as

D =
n

∑
i=1

k

∑
r=1

yir log

(
yir

π̂ir

)

if yir = 0, the termyir log

(
yir
π̂ir

)
is set to zero. The mean of these 500 deviance values is used to compare

our method with MLE. The results of computed mean squared prediction error (MSPE) and mean deviances
are presented in Table 3. Although our method mainly focus on the accuracy and existence of estimates but
Table 3 shows that it has also better performance in terms of prediction error and reducing the prediction
error with both measures i.e., the mean squared prediction error and the deviance as compared to usual MLE.

6 COMMENTS AND CONCLUSION

The shrinkage technique discussed in this text shrinks the parameter estimates without using any penalty
term as in ridge or lasso but shrinking the responses towards the true unknown probabilities in a simple and
easy way. However rather than choosing an optimum value of penalty term, one has to decide about the
optimum values of the tuning parameters using some cross-validation criteria. Pseudo data sets are used
here as a tool to compute the estimates and the way the pseudo data sets are used, assure the existence of
estimates addressing the problem of separation (if any) and also in case where the number of parameter to
be estimated are large relative to the sample size. Our shrinkage estimates are easy to compute with pseudo
responses, have better performance than MLE in terms of MSE and have improved existence of estimates
i.e., they are robust against separation and in the situations with large number of covariates relative to the
number of response observations.
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APPENDIX

A. STANDARD ERRORS FOR SHRINKAGE ESTIMATES

The score function of weighted log-likelihood function given in (6) can be written as

sw(βββ∗) =
n

∑
i=1

XT
i Di(βββ∗)ΣΣΣ−1

i (βββ∗)[ỹi −h(ηηηi)]

=
n

∑
i=1

XT
i Di(βββ∗)ΣΣΣ−1

i (βββ∗)[yi −h(ηηηi)+y∗i ] (A.1)

with y∗i = ỹi −yi . From here the first order approximation yields

β̂ββ
∗
−βββ∗ ≈

(
−∂sw(βββ∗)

∂βββ∗T

)−1

sw(βββ∗).

From (A.1) the weighted score function can be written as

sw(βββ∗) = s(βββ∗)+sα(βββ∗),

where

s(βββ∗) =
n

∑
i=1

XT
i Di(βββ∗)ΣΣΣ−1

i (βββ∗)[yi −h(ηηηi)] and

sα(βββ∗) =
n

∑
i=1

XT
i Di(βββ∗)ΣΣΣ−1

i (βββ∗)y∗i

The derivatives needed here are

− ∂s
∂βββ∗T

= F +
n

∑
i=1

XiX
T
i

∂2h
∂ηηη∂ηηηT {yi −πππi},

where F is the weighted Fisher matrix,

F =
n

∑
i=1

XiX
T
i ΣΣΣ−1

i

(
∂h
∂ηηη

)(
∂h
∂ηηη

)T

, (A.2)

and

− ∂sw

∂βββ∗T
=

n

∑
i=1

XiX
T
i ΣΣΣ−1

i
∂2h

∂ηηη∂ηηηT y∗i .

The property of score function thatE(s(βββ∗)) = 0 is not fulfilled for our weighted score function because
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E(sw(βββ∗)) 6= 0. For the covariance of weighted score function, after some laborious derivation we get

cov(sw(βββ∗)) =
n

∑
i=1

ΓΓΓT
i ΣΣΣiΓΓΓi

where
ΓΓΓi = AT

i ΣΣΣ−1
i DT

i X i

with aq×q matrixA i given as

A i =


αi(1)−αi(2) αi(k)−αi(2) αi,(k−1)−αi(2) · · · αi(3)−αi(2)
αi(2)−αi(3) αi(1)−αi(3) αi(k)−αi(3) · · · αi(4)−αi(3)
αi(3)−αi(4) αi(2)−αi(4) αi(1)−αi(4) · · · αi(5)−αi(4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
αi,(k−1)−αi(k) αi,(k−2)−αi(k) αi,(k−3)−αi(k) · · · αi(1)−αi(k)


for αi(l), the weight corresponding to theith observation in the original data(l = 1) and q pseudo data
sets(l = 2, . . . ,k). The term∂sα/∂βββ∗T in the expression forcov(sw(βββ)) may be neglected asymptotically as
αi(l) → 0, for l = 2, . . . ,q,∀i with increasing sample size and one obtains as approximation the sandwich
matrix

cov(β̂ββ) = F(βββ∗)−1cov(sw(βββ∗))F(βββ∗)−1. (A.3)

With αi(l) = 0 for l = 2, . . . ,q,∀i, the covariance coincides with that of usual MLE. The accuracy of approx-
imation of the standard errors of such type of estimates has been investigated by Tutz and Leitenstorfer [10]
for binary responses.
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ABSTRACT 

 

Missing value is a common issue in clinical trials, and they may cause difficulties of analyses 

when they cannot be simply deleted. This study introduces the modified multiple imputations 

using the classic EM algorithm with the Bootstrapping re-sampling, which considers the 

correlations between the variables, and allows investigating the uncertainty of the imputations. 

Study focuses on the multivariate normal distributed case, and the application is carried out on a 

real Bio-data.  The current study starts with a review and the comparisons between two widely 

used Multiple Imputations methods: the Multiple Imputation using Additive Regression, 

bootstrapping and Predictive Mean Matching (PMM) and the EM algorithm. Instead of 

converging the parameters of the data distribution, the modification is made by converging the 

missing values using EM algorithm. The combination with Bootstrapping re-sampling enables 

the replication of the imputation so that the uncertainty of imputations can be investigated. The 

application on a real Bio-data identified that the modified multiple imputations have better 

control on the estimates of missing values. 

 

Keywords: Multiple Imputations; Bootstrapping; Predictive Mean Matching; EM algorithm. 

 

1. INTRODUCTION 

 

Missing value is a common phenomenon in clinical trials. It may be caused by dropping out of 

patients, technique limits, none response of survey and so on. If the amount of missing values is 

minor, they can be removed. However, if ignoring the missing values causes the loss of valuable 

information, they need to be filled. The easy and straight way is to use the mean of a variable to 

estimate all the missing values in that variable. But this method does not allow investigating the 

uncertainty of the estimation, and also ignores the correlation between variables. To solve this, 

Rubin (1987) introduced the Multiple Imputations (MI), as well as how to use MI to obtain valid 

inferences of imputed data. Multiple Imputations estimate the same missing value sufficient 

times, say k times. Based on the k estimates, the imputing variation can be studied using the 

standard deviation, confidence intervals, etc. Two multiple imputations methods for continuous 

variables are studied in current paper: Expectation Maximization (EM) algorithm (Schafer, J.L., 

1997) and PMM (Multiple Imputation using Additive Regression, Bootstrapping and Predictive 

Mean Matching). The conventional EM algorithm is modified to apply the Multiple Imputations 

in this study by combining the Bootstrapping re-sampling.  

The data used here was collected by an experiment aiming to compare two paired treatments, 

and the patients were followed up at several time points. A set of biomarkers were recorded with 

non-ignorable amount of missing values randomly located. Thus the imputation needs to be done 

properly. Because biomarkers are believed to be related, a multivariate normal distribution is 
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assumed on the logarithm of biomarkers. A brief introduction of data will be given in section 2. 

Following this, section 3 introduces the Multiple Imputations using Additive Regression, 

Bootstrapping and Predictive Mean Matching (PMM). Section 4 and section 5 perform Multiple 

Imputation using EM algorithm, the existing R function em.norm and EM imputation with 

bootstrapping (em.boots) respectively.    

  

2. DATA INTRODUCTION 

 

The data documented the variables of experiment containing two paired treatments. Both of them 

were applied randomly on the right/left side of each subject. During the experiment, patients 

were examined at five chosen time points: Visit 2 when patients were enrolled and controlled for 

21 days to reach an uniform condition, Visit 6 when two treatments began, and then Visit 7, 8 

and 9 corresponding to 4, 11 and 18 days after treatments respectively. The time line of this 

clinical trial is described in Fig.1. The 16 biomarkers were recorded through the five time points, 

and 25 out of 368 records have missing values. Since this is a longitudinal data, removing one 

missing record also deletes the whole information on the corresponding patient. As a result, 

alternative approach, imputation, is required. 

 

 
Figure 1: Time line of experiment with paired treatments. 

 

 

The variables of the data are introduced in Table 1. Treatments and Side of mouth together 

indicated which treatment was applied on which side of patient, and they are completely 

recorded. Visit number indicated the time point that the patient has been examined. Both clinical 

score A and B are categorical variables with three levels: 0 for health patients and non-zero 

indicates the severity of disease, i.e. higher value means more serious. Another clinical score C 

has five levels and is also an ordinal variable. At the end, 16 biomarkers were measured and they 

are non-negative continuous. 

A complete study is made from the original 16 biomarkers, ignoring other variables, and one 

single missing value is located randomly among them. This enables a comparison between 

estimated value and the original value later on. As a result, one of Bio1 value was chosen to be 

missing, and the true value is 20.45. In following sections, three imputing methods will be 

applied to estimate this missing value. 

 

3. PMM IMPUTATION 

 

PMM in current context stands for the Multiple Imputations using Additive Regression, 

Bootstrapping and Predictive Mean Matching. It can be performed by an existing R function 
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“aregImpute” in the library “Hmisc”. It is widely used to deal with the missing values in medical 

research. Rouxel et al (2004) and Eijkemans et al (2008) both adopted the “aregImpute” function 

in Cox-based analyses to handle the missing information, with 10 iterations and a single iteration 

respectively. Koopman et al (2008) applied “aregImpute” function in different ways to fill the 

missing values in Individual Patient Data Meta-analyses.   

 

 

Table 1: Structure of dataset ‘16Bio’ 

Variable name Explanation Missing values 

Subject ID number 38 subjects in total 0 

Gender Female or Male 0 

Treatments L77=normal product 

G70=product with active 

0 

Side of mouth Left or Right 0 

Visit number  2 for 21 days before the treatments 

6 for the day treatments start 

7 for 4 days after treatments 

8 for 11days after treatments 

9 for 18 days after treatments 

2 

Clinical score A Three levels indicated by 0, 1 and 2 35 

Clinical score B Three levels indicated by 0, 1 and 2 153 

Clinical score C Five levels indicated by 1, 2, 3, 4, and 5 83 

Bio1-Bio16 16 biomarkers  25 

 

 

Basically, the function “aregImpute” applies an additive regression with bootstrapping re-

sampling and the predictive mean. It uses the Predictive mean matching, which avoids 

computing residuals or constraining imputed values to be in the range of observed values. 

Predictive mean matching imputes each missing value of the target variable with the observed 

value whose predicted transformed value is closest to the predicted transformed value of the 

missing value. Instead of using the estimated value by the regression model, it uses the observed 

value from dataset which has the closest predicted value to that of missing value.   

The process of PMM method can be summarized in three steps: 1) complete the data, fill the 

missing values with initial values randomly sampled from the non-missing part; 2) for each 

variable carrying missing values, a random sample is drawn with replacement from the complete 

new data in step one (Bootstrapping). And a flexible additive model is fitted; the missing values 

are estimated based on this model with the predictive mean matching; 3) the current completed 

target variable is used as a predictor of other missing variables. Step 2 and 3 can be repeated n  

times as required. 

Apply 100 iterations using PMM method on the data selected from the original Bio-data in 

Section 2, so the single missing value of Biomarker one is estimated 100 times. The results are 

displayed in Fig.2: black circles on the graph are the 100 estimates of this missing value, and the 

average of 100 estimates is 24.67 while the true value is 20.45. 
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Figure 2: 100 imputations by aregImpute {Himcs} 

 

Because that the predictive mean matching takes the observation with the best-fitted estimate as 

estimates, all the points on Fig.2 are actually observations. To explain this clearer, Fig.3 plots all 

the observations in Bio1, and the chosen „missing‟ value is marked in black bold. The red 

triangles points out the observations used at least once as an estimate, and three of them with the 

highest frequencies are printed in red bold. They are the subject 51, 54 and 58 with frequencies 

10/100, 9/100, and 20/100, respectively. Now one question comes up that as increasing the 

number of iterations, will all the observations be used as estimates? So larger number of 

iterations was tried in the study, and Fig.4 shows the attempt with 100000 iterations. It is found 

that more observations have been used as estimates, but the three highest frequency observations 

are the same: Subject 51 has been used 7525 times, Subject 54 has been used 9972 times and 

Subject 58 has been used 14829 times. Subject 12 has also been used 7331 times. However, 

Subject 55 which is further away from others has been chosen once. This pulls the average value 

of estimates higher than it is supposed to be. Therefore, rather than using the arithmetic mean, 

the weighted mean is more suitable in this case; the weights are the frequencies the observation 

has been chosen as estimate. The weighted mean here is 25.48, while the arithmetic mean is 

32.07.   

 

4. EM IMPUTATION 

 

This section introduces another imputation method, EM algorithm, which is widely used in 

various areas of researches. The earliest EM algorithm was introduced by Little and Rubin 

(1987) and normally applied as an imputation in the following steps: 1). Replace missing values 

by estimated values (initial values); 2). Estimate the parameters by maximizing the likelihood 

function; 3). Re-estimate the missing values under these new parameters, and replace the missing 

cells with these new estimates. 4). Repeat step 2 and 3 until converged.  
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Figure 3: observations used as estimates in 100 iterations. 

 
Figure 4: observations used as estimates in 100000 iterations. 

 

 

This process can be implemented by an existing R function . { }em norm norm . It simulates an estimate 

by a random drown from its predictive distribution given the observations and the converged 

parameters of the data distribution. The replication of imputations can be realized by repeating 

the random drowns.    

The same missing value is imputed by this EM method 100 times, and the estimates are 

revealed on Fig.5. The grey points are the observations and the black circles are the 100 imputed 

values. Taking the average of 100 estimates gives 15.43, highlighted by the red dashed line, 

while the true value is 20.45.   
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Figure 5: 100 imputations by em.norm{norm}.  

 

Based Little and Rubin‟s theorem (1987), a converged estimate for missing value is expected, i.e. 

the conditional mean of the predictive distribution given the latest estimated parameters and the 

observations. However, the function . { }em norm norm practices the multiple imputations by random 

estimates from the corresponding predictive distribution. It allows the consideration of 

uncertainty, but adds another source of uncertainty by random sampling. 

 

 

5. EM IMPUTAION BY SELF-WRITTEN FUNCTION 

 

To achieve a desirable control on the estimates of missing values, instead of using the existing R 

function, My function applies the EM imputation, specific for the Bio-data. This assumes 

multivariate normal distribution on the logarithms of 16 biomarkers. The convergence focuses on 

the estimate of missing value rather than on the parameters of data distribution.   

 

Precisely, suppose there are three variables following a jointly multivariate normal distribution

 1 2 3 ~ ( , )X X X X N   with mean  1 2 3

T
    and covariance matrix

2

1 12 13

2
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2
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The probability function can be written as 

1

3 1
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1 1
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Considering one missing value case, suppose the
thk value is missing in

1X , and then the data is 

arranged as 2 3

1 2 3

k k

obs obs obs

x x

X X X

 
 
 

. Given 2kx and 3kx , we want to estimate the missing value 1kx  

using the conditional distribution of 1kx given 2kx and 3kx  
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where 
2 3, 2 3( , )x xf x x follows a bi-normal distribution. So the estimate of 1kx uses its conditional 

mean given 2kx and 3kx , i.e. 
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where  12 12 13   and 
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 .  

 

The imputing process converges the conditional mean of each missing value. Firstly, it fills 1kx

with the mean of 1X ignoring 1kx ; estimate
( )

1̂

t

kx as 1 2 3( | , )k k kE x x x ; update 1kx by
( )

1̂

t

kx , and repeat the 

imputation, calculate
( 1)

1̂

t

kx 
 based on

( )

1̂

t

kx until reached the convergence.  

To explain how this function works, suppose we have three biomarkers following a 

multivariate normal distribution and this data has three random missing values, see below. To 

complete the data, initial values are given to fill the missing values; for a , use the conditional 

mean given
27 37

0.168 6.550x x   ; for b , use
22 12 3( | , )obsE x x X , where 

3obsX  is the mean of variable 

„b3‟ ignoring the missing value; for c , use the conditional mean given  

12 22 22 12 3
3.566 ( | , )

obs
x x E x x X  . 

 

 
           b1          b2       b3 

 [1,] 3.987529  1.44348489 6.775554 

 [2,] 3.565562       NA(b)    NA(c) 

 [3,] 2.586146  0.18357229 5.245294 

 [4,] 2.479586 -0.78245757 4.702854 

 [5,] 2.727846  0.06172303 5.924735 

 [6,] 4.437846  1.71982918 6.559854 

 [7,]    NA(a) -0.16840910 6.549635 

 [8,] 3.874542  1.74304080 7.433668 

 [9,] 1.002142 -0.49336389 4.907529 

[10,] 3.518252  0.67625807 6.651102 

 

 

 

In the case when there are two missing values (2
nd

 row), ( 1)ˆ tb   is based on ( )ˆ tc , and then ( 1)ˆ tc  is 

based on ( 1)ˆ tb  . Additionally, the convergence is reached when the maximum difference between 

two consecutive iterations, 
( 1) ( )

( 1) ( )

( 1) ( )

ˆ ˆ

ˆ ˆ

ˆ ˆ

t t

t t

t t

a a

b b

c c
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is smaller than given value C . Table 2 compares the results using . { }em norm norm and using the 

proposed function. Both functions ran 100 iterations. The . { }em norm norm  randomly drew 100 

estimates from the conditional predictive distribution, and the mean of 100 iterations was taken; 

the proposed function converged the estimates at 75
th

 iteration with a criterion of 501 10 . This 

criterion is much stricter compared with that of . { }em norm norm
41 10 . If loose this value to 61 10 , 

the convergence will be achieved at the iteration 27. As you can see from Tab.2, the results by 

. { }em norm norm  are close to those by the proposed function. 

  

 

Table 2 Comparison between my function and ‘em.norm’ 

             Methods    Estimates 

em.norm(10000 draws)    2.558 0.913 6.457 

em.zl(critzl=1E-50, converged.it=75)    2.525 0.930 6.463 

 

 

This process can be repeated by the re-sampling technique. İn current study, the Bootstrapping is 

used. Bootstrapping is used on the completed cases to make a new complete data and then the 

same missing value is imputed based on this new data. Doing this we achieve the multiple 

imputations (MI). 

 

Use the same data in Section 3 and 4, where a single missing value was randomly located in 

Bio1. Our proposed function (em.boots) ran with different numbers of iterations. Table 3 

compares the results with those by the R function em.norm. The first noticeable thing is that the 

standard errors of estimates by em.boots are much smaller than those by em.norm. Another 

advantage of em.boots is that the estimate is converged with less interations: the estimate is 

14.35 (s.e.=0.018) with 10000 iterations, while the estimate does not show evidence of 

convergence by em.norm with 10000 iterations. 

 

 

Table 3: comparison between em.boots and em.norm 

Number of iterations Estimates (s.e.) 

100 em.norm: 15.47 (0.82) 

em.boots: 14.54 (0.17) 

1000 em.norm: 15.75 (0.264) 

em.boots: 14.38 (0.056) 

100000 em.norm: 15.83 (0.027) 

em.boots: 14.35  (0.006)        

 

 

6. CONCLUSION 

 

This paper studies three methods to impute the missing values in the case where the data is 

assumed to be multivariate normal distributed. Two popular methods are reviewed and 

investigated: Multiple Imputations using Additive Regression, Bootstrapping and Predictive 

Mean Matching (PMM) and the Expectation Maximization (EM) algorithm. The former method 
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estimates the missing values by selecting the observations based on the additive regression. This 

may bias the imputation by picking the extreme values or outliers. The weighted mean is 

suggested to use with PMM instead of the arithmetic mean. The EM algorithm applied by 

em.norm is modified to converge the estimate of missing value rather than to converge the 

parameters of distribution. In addition, our proposed EM imputation together with Bootstrapping 

provides the multiple imputations (MI). The application on the Bio-data showed a better control 

of estimation and a quicker convergence. 
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